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Online social activity and interaction is becoming embed-
ded into the fabric of our society. From electronic communi-
cation (e.g., email, IMS) to social media (e.g., blogs, wikis)
to online content sharing (e.g., facebook, flicker, youtube)—
we are currently undergoing an explosive growth in the man-
ner and frequency in which people interact online, both with
each other and with content.

The ability to collect and analyze large-scale, complex
datasets has recently transformed the fields of computational
biology and physics—and the explosive growth of social
interactions online offer the potential for social science to
undergo a similar transformation. Since the traces of elec-
tronic activity, including the production and consumption of
content, provides a wealth of data that is much more exten-
sive (and more cost effective to collect/observe) than what
has previously been studied in social science domains, it
could be used to vastly improve our understanding of inter-
personal behavior, social processes, and decision making. At
the same time, from a systems perspective, the use patterns
in social systems (i.e., structure of content and traffic) may
be quite different from other networks/traffic on the Internet.
The online activity data can thus be used to understand so-
cial behavior as it relates to both Internet traffic and load on
the infrastructure of online social networks, in order to drive
the development of appropriate models, tools and systems to
manage and maintain online content and interactions.

However, the size and scope of online interaction data
make it impractical to collect and study complete datasets.
In 2009, for example, Facebook reported that the num-
ber of chat messages had exceeded one billion per day.
Thus, network sampling methods are critical to selecting
a subset of the data for study. Much of the previous re-
search on social network sampling has focused on algo-
rithm development, with the aim of accurately and effi-
ciently select nodes/edges/subgraphs from a single large
graph (Leskovec & Faloutsos 2006; Hubler et al. 2008;
Ribeiro & Towsley 2010; Maiya & Berger-Wolf 2011;
Ahmed et al. 2011).

For example, consider an input graph G = (V, E) of size
n = |V|. Then the goal is for the sampling algorithm to se-
lect a subgraph G = (V;, E) with a subset of the nodes
(Vs C V) and/or edges (Es C F), such that |V,| = ¢n, where
¢ < 1 is the sampling fraction. In some cases, the aim is to
use G to estimate parameters of the full graph (e.g., degree

distribution). In other cases, the aim is to have G ; be a repre-
sentative subgraph from the the full graph. Since a complete
graph is rarely available for evaluation, the proposed sam-
pling methods are typically assessed by measuring the sim-
ilarity between characteristics of selected sample and those
of the input graph, which is inevitably a sample itself. Key
technical challenges that have been investigated include:

e How to sample when the data are heterogeneous and in-
terdependent (e.g., networks are sparse, but heavy-tailed
with clustering) (Leskovec & Faloutsos 2006; Hubler et
al. 2008; Maiya & Berger-Wolf 2011).

e How to sample without knowledge of the full graph
(e.g., users are only visible through queries) (Ribeiro &
Towsley 2010).

e How to sample in a dynamic environment when there are
not enough resources to store the full graph (e.g., in graph
streams) (Ahmed et al. 2011).

However, these efforts have generally not considered the
larger issue of how sampling impacts the analysis and un-
derstanding of social processes and performance of social
systems (e.g., the performance of a new routing protocol for
an OSN system, or the accuracy of a viral marketing model).
In particular, they have focused more on preserving proper-
ties of the network structure, rather than on providing accu-
rate assessment of the properties of processes overlaid on
the network structure. Although in some cases, preserving
aspects of the network topology in a sample may be suffi-
cient to accurately estimate the characteristics of processes
overlaid on the network, it may not be necessary, nor may
it be the only manner in which we can accurately estimate
performance.

Moreover, there has been relatively little attention paid to
developing the theoretical foundation for sampling from net-
work processes that would drive the investigation of these
types of questions. For example, if the aim is use G4 to
evaluate performance of a process f(.) on a larger graph
G (where n >> m), then the algorithm evaluation should
assess sample “representativeness” by estimating an empir-
ical distribution for the process overlaid on the generated
samples P(f(G,,)) and compare it to process in the origi-
nal graph P(f(G)). For example, if f(.) is a diffusion pro-
cess that models the spread of information in a social net-
work, then we would like our evaluation of f in G to accu-



rately reflect the diffusion properties of f that would be ob-
served in the full graph G. However, to begin to formulate
and assess sampling algorithms in this manner, we need a
more precise description, and better understanding, of graph
populations—both with respect to the distribution of possi-
ble worlds and their dynamics/evolution over time.

A statistical population is typically defined as the set of
all items that one wishes to study. When the object of study
is an entire network, the population should be defined as a
set of networks of a specified size (e.g., n), or the set of net-
works that could be generated by the same underlying pro-
cess that created the input network G. In practice, we can
rarely observe multiple networks from the same social net-
work domain. There is only one Facebook friendship graph,
one Flicker graph—although we can down-sample many
smaller networks from these large networks, we cannot mea-
sure a second, independent instance. Instead, these networks
correspond to complex systems evolving over time. There-
fore, it is more reasonable to define the population through
the process that underlies the formation of the networks. Al-
though it is still an open question as to how to model the
generative processes of network structure probabilistically,
this will be critical to the investigation of sampling methods
and their impact on subsequent network analysis.

For example, since many graph characteristics are not in-
dependent of graph size, it is not clear what structure in the
smaller subgraphs will give an accurate estimate of the per-
formance in larger graphs (as they evolve over time). Con-
sider the case where the original network consists of n nodes
and we construct a 10% sample (i.e., |Vs| =0.1n). Let | E,|
and | E5| be the number of edges in the original and the sam-
pled network respectively, and let the density in the orig-
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sample edges will be: |Es| ~ 0.12|E,| < 0.1|E,|. This
shows the dependency of graph metrics on graph size—the
number of nodes grows linearly, but the number of possible
edges grows quadratically (in n). In G, the average degree
is d, = Lol On the sample subgraph G, if the density is

equal to that of the original graph, then the average degree
will be underestimated d, = % ~ Q1Eo| Similarly, if
we aim to capture the original average degree in the sample,
then the density will be overestimated. It is not clear which
metric to optimize to select “better” sample graphs for eval-
uation of performance.
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Moreover, since none of the recent work on graph sam-
pling includes an explicit definition of the population of in-
terest or a description of the set of events under considera-
tion, this has led to subjective evaluations of algorithm per-
formance where the similarity of the sample to the origi-
nal graph is used as an indirect proxy for representative-
ness. Representativeness of a sample subgraph G should
be measured through the likelihood of G5 given the underly-
ing process that generated G. The primary assumption with
the current proxy evaluation is that when the sampled net-
work exhibits graph metrics similar to the original input net-
work, then the sample is “close” to the mode of the distribu-

tion. However, since the underlying distribution is not for-
mally defined, it is not clear whether this assumption holds
in practice. Moreover, when the statistics do not match ex-
actly (as is most often the case), a secondary assumption is
that “closer” implies “more” representative. Again, it is not
clear whether this holds for real world network processes
(e.g., we do not know how much variance is expected in
real-world network systems).

To develop a better understanding of how sample struc-
ture affects the analysis of behavior and performance in
larger networks, more attention needs to be paid to the ex-
ploration of correlations among graphs properties, how they
evolve given a specific generative mechanism, and how to
model probability distributions over graph processes. We
note that current statistical models of graphs focus on mod-
eling graphs of a specific size (i.e., the number of nodes is
fixed). Size independent graph models exist (e.g., Lovdsz’s
graphon), but the current state of the art does not address
sparse graphs, nor are there any formal notions of the statis-
tical properties of graph processes (e.g., stationarity).

Network sampling is critical for analyzing online social
interaction data, both for system development and for in-
vestigation and refinement of social theories. We note that
since almost every network dataset is a sample of network
data, the sampling method can impact the accuracy of anal-
ysis even when researchers have not explicitly considered
how to sample. The key aspect of the data—the relationships
among users, content, and applications—is also the charac-
teristic that makes it difficult to guarantee unbiased “rep-
resentative” samples, since local dependencies combine in
complex ways to produce global structure. Thus, in order to
drive both the advancement of computational social science
and the development of robust and reliable social computing
systems, more research needs to focus on developing:

e A formal framework for sampling from heterogeneous,
partially-observed, interdependent data.

e An understanding of various network characteristics and
their dependencies.

e Probabilistic models of dynamic graph processes, that can
model network structure as it evolves over time.
e An analysis of the impact of sample representativeness on

the investigation of social processes and/or system proto-
cols overlaid on the networks.
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