
System Support for Managing Large Graphs in the Cloud
Sameh Elnikety and Yuxiong He

Microsoft Research

1 Motivation
Large graphs are at the heart of online social
networks and many other applications including
routing in road networks and online
collaboration systems. In this paper, we argue
that a novel distributed infrastructure is needed
to manage and query large graphs to meet the
demands of these applications.

In a public social network, a node represents an
entity such as a person, event, or photo. An
edge represents a binary relationship between
two nodes indicating for example friendship,
participation at an event or appearance in a
photo. Both nodes and edges may have a set of
attributes because they model real world
entities and interactions. The resulting social
graph is challenging to manage: It is too large to
manage on a single server, there are frequent
updates and users want to pose ad-hoc queries.
For example, a user may ask “which photos
include me and my friends X and Y”, “how I am
connected to person Z”, or “who among my
friends is attending this event”.

Private social networks pose similar challenges.
For example, Codebook [BPZ10] is a social
network of software developers and their
software artifacts within an enterprise.
Codebook manages a large graph modeling
software developers with their organizational
hierarchy, source code (including files and
functions and their revisions), bug reports, and
design documents. Such data are gathered from
source code repositories and the employee
database. Codebook allows engineers to ask
“who resolved this bug”, and “who built this
feature”, and “who will be impacted if I change
this source code function”.

2 Limitations of Current Graph
Systems
In contrast to batch graph processing systems,
which have important applications such as
social network analytics and webpage raking,
we focus here on online systems that answer
interactive queries within a few hundred
milliseconds.

Current graph management systems offer
limited functionality to answer the queries
mentioned in Section 1, which include both
reachability queries and graph pattern
matching. Those types of queries are not suited
for relational engines [ADJ87] for several
reasons: (1) Some queries are recursive (e.g.,
reachability queries), (2) nodes and edges are
accessed in pattern not suitable for disk-based
data structures, and (3) pattern queries require
an excessive number of join operations with
large intermediate results. This motivates graph
systems to build their specialized graph engines.

Existing graph systems lack declarative query
languages. For example, neo4j, which is among
the most popular centralized graph systems,
provides a navigational interface, where
programmers need to write programs, rather
than declarative queries. Distributed graph
engines such as Google Pregel [MAB+10] and
Microsoft Surfer [CWHY10] accept programs
that execute at graph nodes and send messages
across graph edges, focusing more on batch
processing.

3 Cloud Infrastructure
Cloud computing offers two opportunities. First,
the availability of a large number of servers
allows using large main memories to host the
topology of large graphs, enabling online query
processing. This is important because

processing queries over disk-based graphs is too
slow for interactive queries. Second, multiple
sources of information can be aggregated into a
multi-graph, enabling richer queries. A user
query can access data from several social
networks: Facebook and LinkedIn have portions
of the user social network.

4 Where We Stand
We outline several problems which we are
investigating and invite our colleagues to
reshape and solve them.

4.1 Graph Query Languages
The interface of graph system should be a
declarative query language to allow users to
write queries rather than navigational
programs. We find that the majority of graph
queries can be expressed as regular expressions
or graph patterns. Both types of queries can be
expressed declaratively, allowing execution
engines to optimize their processing.

4.2 Execution Engines
Graphs are processed on a cluster of servers.
Hybrid execution engines, which use both a
graph engine and a relational engine, offer
important advantages. A graph engine
maintains the graph topology in main memory
to answer reachability queries, and a relational
engine manages node and edge attributes to
retrieve predicated graph elements.

4.3 Isolation
Graph operations are dominated by traversals
with more reads than writes. Multi-version
concurrency control models offer clear
correctness semantics as well as low overhead
for read dominated workloads. In particular,
generalized snapshot isolation [EPZ05] extends
conventional snapshot isolation to distributed
systems in a manner that allows graph
traversals to neither block or be blocked by
updates while providing serializability [BHEF11].

4.3 Query Optimization
With a declarative query language, a query
optimizer can generate efficient execution plans
customized for the managed graph instance to
visit fewer nodes. Mid-query re-optimization
[KD98] and budget-based techniques [BPS11]
seem effective for traversing scale-free graphs
[BB03].

Graph indexes and materialized views are active
areas of research but they are developed in
isolation and have not been integrated into
graph systems. Current optimizers do not fully
exploit them.

References
[ADJ87] R. Agrawal, S. Dar, H.V. Jagadish. "Direct Transitive
Closure Algorithms: Design and Performance Evaluation."
VLDB 1987.

[BB03] Albert-László Barabási, Eric Bonabeau. "Scale-Free
Networks." Scientific American May 2003.

[BHEF11] Mihaela Bornea, Orion Hodson, Sameh Elnikety,
Alan Fekete. "One-Copy Serializability with Snapshot
Isolation under the Hood." ICDE 2011.

[BPS11] Matthias Bröcheler, Andrea Pugliese, V. S.
Subrahmanian. "A budget-based algorithm for efficient
subgraph matching on Huge Networks". GDM 2011

[BPZ10] Andrew Begel, Khoo Yit Phang, Thomas
Zimmermann. “Codebook: Discovering and Exploiting
Relationships in Software Repositories.” ICSE 2010.

[CWHY10] Rishan Chen, Xuetian Weng, Bingsheng He, Mao
Yang. “Large Graph Processing in the Cloud.” SIGMOD
2010.

[EPZ05] Sameh Elnikety, Fernando Pedone, Willy
Zwaenepoel. “Database Replication Using Generalized
Snapshot Isolation.” SRDS 2005.

[KD98] Navin Kabra, David DeWitt. "Efficient Mid-Query
Re-Optimization of Sub-Optimal Query Execution Plans."
SIGMOD 1998.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart
J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz
Czajkowski. “Pregel: a System for Large-Scale Graph
Processing.” SIGMOD 2010.

[SEHK12] Mohamed Sarwat, Sameh Elnikety, Yuxiong He,
Gabriel Kliot. “Horton: Online Query Execution Engine for
Large Distributed Graphs (Demo)”. ICDE 2012.

