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1. INTRODUCTION  

Mobility is efficient, safe and affordable travel in our cities, towns and other places of 
interest [52]. Mobility services, e.g., routing and navigation, are a set of ideas and technologies 
that facilitate understanding the geo-physical world, knowing and communicating relations to 
places in that world, and navigating through those places. The transformational potential of 
mobility services is already evident. From Google Maps [17] to consumer Global Positioning 
System (GPS) devices, society has benefited immensely from mobility services and technology. 
Scientists use GPS to track endangered species to better understand behavior, and farmers use 
GPS for precision agriculture to increase crop yields while reducing costs. We’ve reached the 
point where a hiker in Yellowstone, a biker in Minneapolis, and a taxi driver in Manhattan know 
precisely where they are, their nearby points of interest, and how to reach their destinations. 

Increasingly, however, the size, variety, and update rate of mobility datasets exceed the 
capacity of commonly used spatial computing and spatial database technologies to learn, 
manage, and process the data with reasonable effort. Such data is known as Spatial Big Data 
(SBD). We believe that harnessing SBD represents the next generation of mobility services. 
Examples of emerging SBD datasets include temporally detailed (TD) roadmaps that provide 
speeds every minute for every road-segment, GPS trace data from cell-phones, and engine 
measurements of fuel consumption, greenhouse gas (GHG) emissions, etc. SBD has 
transformative potential. For example, a 2011 McKinsey Global Institute report estimates 
savings of “about $600 billion annually by 2020” in terms of fuel and time saved [26,29] by 
helping vehicles avoid congestion and reduce idling at red lights or left turns. Preliminary 
evidence for the transformative potential includes the experience of UPS, which saves millions 
of gallons of fuel by simply avoiding left turns (Figure 1(a)) and associated engine idling when 
selecting routes [26]. Immense savings in fuel-cost and GHG emission are possible if other fleet 
owners and consumers avoided left-turns and other hot spots of idling, low fuel-efficiency, and 
congestion. Ideas advanced in this paper may facilitate ‘eco-routing’ to help identify routes that 
reduce fuel consumption and GHG emissions, as compared to traditional route services 
reducing distance travelled or travel-time. It has the potential to significantly reduce US 
consumption of petroleum, the dominant source of energy for transportation (Figure 1(b)). It may 
even reduce the gap between domestic petroleum consumption and production (Figure 1(c)), 
helping bring the nation closer to the goal of energy independence. 

 (a) (b) (c) 

Figure 1: (Left) UPS avoids left-turns to save fuel [26]. (Middle) Petroleum is dominant energy source for US 
Transportation [49]. (Right) Gap between US petroleum consumption and production levels is large and growing [3,9]. 
(Best in color) 
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However, SBD raises new challenges for the state of the art in spatial computing for 
mobility services such as routing. First, it requires a change in frame of reference, moving from 
a global snapshot perspective to the perspective of the individual object traveling through a road 
network. Second, SBD increases the impact of the partial nature of traditional route query 
specification. It significantly increases computation cost due to the tremendous growth in the set 
of preference functions beyond travel-distance and travel-time to include fuel consumption, 
GHG emissions, travel-times for thousands of possible start-times, etc. Third, the growing 
diversity of SBD sources makes it less likely that single algorithms, working on specific spatial 
datasets, will be sufficient to discover answers appropriate for all situations. Other challenges 
include geo-sensing, privacy, prediction, etc. 

2. TRADITIONAL MOBILITY SERVICES 

Traditional mobility services utilize digital road maps [18, 31, 33, 42]. Figure 2(a) shows 
a physical road map and Figure 2(b) shows its digital, i.e., graph-based, representation. Road 
intersections are often modeled as vertices and the road segments connecting adjacent 
intersections are represented as edges in the graph. For example, the intersection of `SE 5th 
Ave' and `SE University Ave' is modeled as node N1. The segment of `SE 5th Ave' between `SE 
University Ave' and `SE 4th Street' is represented by the edge N1-N4. The directions on the 
edges indicate the permitted traffic directions on the road segments. Digital roadmaps also 
include additional attributes for road-intersections (e.g., turn restrictions) and road-segments 
(e.g., centerlines, road-classification, speed-limit, historic speed, historic travel time, address-
ranges, etc.) Figure 2(c) shows a tabular representation of the digital road map. Additional 
attributes are shown in the node and edge tables respectively. For example, the entry for edge 
E1 (N1-N2) in the edges table shows its speed and distance. Such datasets include roughly 100 
million (108) edges for the roads in the U.S.A. [31]. 

 (a) (b)  (c) 

Figure 2: Current representations of road maps as directed graphs with scalar travel time values.  (Left) Example 
road map. [17] (Middle) Graph Representation. (Right) Tabular representation of digital road maps. 

Route determination services [28, 44], abbreviated as routing services, include the 
following two services: best-route determination and route comparison [40]. The first deals with 
determination of a best route given a start location, end location, optional waypoints, and a 
preference function. Here, choice of preference function could be: fastest, shortest, easiest, 
pedestrian, public transportation, avoid locations/areas, avoid highways, avoid toll ways, avoid 
U-turns, and avoid ferries. Route finding is often based on classic shortest path algorithms such 
as Dijktra's [23], A* [8], hierarchical [19, 20, 41, 43], materialization [37, 39, 41], and other 
algorithms for static graphs [4, 6, 7, 12, 14, 34, 38]. Shortest path finding is often of interest to 
tourists as well as drivers in unfamiliar areas. In contrast, commuters often know a set of 
alternative routes between their home and work. They often use an alternate service to compare 
their favorite routes using real-time traffic information, e.g., scheduled maintenance and current 
congestion. Both services return route summary information along with auxiliary details such as 
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route maneuver and advisory information, route geometry, route maps, and turn-by-turn 
instructions in an audio-visual presentation media. 

3. EMERGING SPATIAL BIG DATA  

SBD are significantly more detailed than traditional digital roadmaps in terms of 
attributes and time resolution. In this subsection we describe three representative sources of 
SDB that may be harnessed in next generation routing services.  

Spatio-Temporal Engine Measurement Data: Many modern fleet vehicles include rich 
instrumentation such as GPS receivers, sensors to periodically measure sub-system properties, 
and auxiliary computing, storage and communication devices to log and transfer accumulated 
datasets [21, 22, 27, 30, 46, 47]. Engine measurement datasets may be used to study the 
impacts of the environment (e.g., elevation changes, weather), vehicles (e.g., weight, engine 
size, energy-source), traffic management systems (e.g., traffic light timing policies), and driver 
behaviors (e.g., gentle acceleration/braking) on fuel savings and GHG emissions. 

These datasets may include a time-series of attributes such as vehicle location, fuel 
levels, vehicle speed, odometer values, engine speed in revolutions per minute (RPM), engine 
load, emissions of greenhouse gases (e.g., CO2 and NOX), etc. Fuel efficiency can be 
estimated from fuel levels and distance traveled as well as engine idling from engine RPM. 
These attributes may be compared with geographic contexts such as elevation changes and 
traffic signal patterns to improve understanding of fuel efficiency and GHG emission. 

 

Figure 3: Engine measurement data improves understanding of fuel consumption [5]. (Best in color) 

For example, Figure 3 shows heavy truck fuel consumption as a function of elevation 
from a recent study at Oak Ridge National Laboratory [5]. Notice how fuel consumption changes 
drastically with elevation slope changes. Fleet owners have studied such datasets to fine-tune 
routes to reduce unnecessary idling [1, 2]. It is tantalizing to explore the potential of this dataset 
to help consumers gain similar fuel savings and GHG emission reduction. However, these 
datasets can grow big. For example, measurements of 10 engine variables, once a minute, over 
the 100 million US vehicles in existence [11, 45], may have 1014 data-items per year.  

GPS Trace Data: A different type of data, GPS trajectories, is becoming available for a larger 
collection of vehicles due to rapid proliferation of cell-phones, in-vehicle navigation devices, and 
other GPS data logging devices [15, 54] such as those distributed by insurance companies [51]. 
Such GPS traces allow indirect estimation of fuel efficiency and GHG emissions via estimation 
of vehicle-speed, idling and congestion. They also make it possible to make personalized route 
suggestions to users to reduce fuel consumption and GHG emissions. For example, Figure 4 
shows 3 months of GPS trace data from a commuter with each point representing a GPS record 
taken at 1 minute intervals, 24 hours a day, 7 days a week. As can be seen, 3 alternative 
commute routes are identified between home and work from this dataset. These routes may be 
compared for idling, which are represented by darker (red) circles. Assuming the availability of a 
model to estimate fuel consumption from speed profile, one may even rank alternative routes for 
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fuel efficiency. In recent years, consumer GPS products [15, 48] are evaluating the potential of 
this approach. 

 (a)    (b) 

Figure 4: A commuter’s GPS tracks over three months reveals preferred routes.  (Best in color) 

Historical Speed Profiles: Traditionally, digital road maps consisted of centerlines and topologies 
of the road networks [16, 42]. These maps were used by navigation devices and web 
applications such as Google Maps [17] to suggest routes to users. New datasets from 
companies such as NAVTEQ [31] use probe vehicles and highway sensors (e.g., loop 
detectors) to compile travel time information across road segments for all times of the day and 
week at fine temporal resolutions (seconds or minutes). This data is applied to a profile model, 
and patterns in the road speeds are identified throughout the day. The profiles have data for 
every five minutes, which can then be applied to the road segment, building up an accurate 
picture of speeds based on historical data. Such TD roadmaps contain much more speed 
information than traditional roadmaps. Traditional roadmaps (Figure 2(a)) have only one scalar 
value of speed for any given road segment (e.g., EID 1). In contrast, TD roadmaps may 
potentially list speed/travel time for a road segment (e.g., EID 1) for thousands of time points 
(Figure 5(a)) in a typical week. This allows a commuter to compare alternate start-times in 
addition to alternative routes. It may even allow comparison of (start-time, route) combinations 
to select distinct preferred routes and distinct start-times. For example, route ranking may differ 
across rush hour and non-rush hour and in general across different start times. However, TD 
roadmaps are big and their size may exceed 1013 items per year for the 100 million road-
segments in the US when associated with per-minute values for speed or travel-time. Thus, 
industry is using speed-profiles, a lossy compression based on the idea of a typical day of a 
week, as illustrated in Figure 5(b), where each (road-segment, day of the week) pair is 
associated with a time-series of speed values for each hour of the day. 

In the near future, values for the travel time of a given edge and start time will be a 
distribution instead of scalar. For example, analysis of GPS tracks may show that travel-time for 
a road-segment is not unique, even for a given start-time of a typical week. Instead, it may 
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consist of different values (e.g., 1, 2, 3 units), with associated frequencies (e.g., 10, 30, 20). 
Emergence of such SBD may allow comparison of routes, start-times and (route, start-time) 
combinations for statistical distribution criteria such as mean and variance. We also envision 
richer temporal detail on many preference functions such as fuel cost. Other emerging datasets 
include those related to pot-holes [35], crime reports [36], and social media reports of events on 
road networks [50]. 

 (a) (b) 

Figure 5: Spatial Big Data on Historical Speed Profiles. (Left) Travel time along four road segments over a day. 
(Right) Schema for daily historic speed data. (Best in color) 

 

4. NEW CHALLENGES  

New generation of mobility services (e.g., Eco-routing) leveraging SBD raise significant 
new challenges for state of the art spatial computing. First, it requires a change in frame of 
reference from a snapshot perspective to the perspective of the individual traveling through a 
transportation network [53]. For instance, consider the new temporally detailed (TD) roadmaps 
providing historical travel-time (or speed) for each road-segment for every distinct minute of a 
week. Consider a person sitting in a vehicle and moving along a chosen path in a TD roadmap. 
She would experience a different road-segment and its historical speed as well as traversal-time 
at different time-intervals, which may be distinct from the start-time.  

Second, the growing diversity of SBD significantly increases computational cost because 
it magnifies the impact of the partial nature and ambiguity of traditional routing query 
specification. Typically, a routing query is specified by a starting location and a destination. 
Traditional routing services would identify a small set of routes based on limited route properties 
(e.g., travel-distance, travel-time (historical and current)) available in traditional digital roadmap 
datasets. In contrast, SBD face orders of magnitude richer information, more preference 
functions (e.g., fuel efficiency, GHG emission, safety, etc.) and correspondingly larger sets of 
choices. New questions thus arise in context of eco-routing: What is the computational structure 
of determining routes that minimize fuel consumption and GHG emissions? Does this problem 
satisfy the assumptions behind traditional shortest-path algorithms (e.g., stationary ranking of 
alternative routes assumed by a dynamic programming principle)? For example, temporally 
detailed roadmaps can potentially provide a distinct route for every possible start-time, even 
when we just consider travel-time. This raises an optimality challenge of correctly determining 
the fastest route corresponding to each start-time, since ranking of candidate routes might vary 
with time of day (rush hour vs. non-rush hour). It also raises a representation challenge to 
summarize potentially large sets of routes in the result. There is also the computational 
challenge of efficiently determining a large collection of routes (e.g., one for each start time and 
preference function) by identifying and reducing unnecessary computations perhaps leveraging 
current cloud computing paradigm (e.g., map reduce) or via novel custom cloud computing 
paradigms, tentatively called spatial cloud computing. 
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Third, the tremendous diversity of SBD sources substantially increases the need for 
diverse solution methods. For example, methods for determining fuel efficient routes that 
leverage engine measurement and GPS track datasets may be quite different from algorithms to 
identify minimal travel-time routes for a given start-time exploiting TD roadmaps. In addition, 
SBD data (e.g., TD roadmaps, GPS-tracks and engine-measurement datasets) differ in 
coverage, roadmap attributes and statistical details. For example, TD roadmaps cover an entire 
country, but provide mean travel-time for a road-segment for a given start-time in a week. In 
contrast, GPS-track and engine-measurements have smaller coverage to well-travelled routes 
and time-periods, but may provide a richer statistical distribution of travel-time for each road-
segment, perhaps revealing newer patterns such as seasonality. New algorithms are likely to 
emerge as new SBD become available and as a result, a new, extensible, architecture will be 
needed to rapidly integrate new datasets and associated algorithms.  

Fourth, another challenge area is in the use of geospatial reasoning and SBD in sensing 
and inference across space and time. Multiple tradeoffs (including those arising in privacy 
considerations) can come to the fore with attempts to sense and draw inferences from stable or 
mobile sensors. New challenges arise from crowd-sourced sensors. For example, the ubiquity 
of mobile phones presents an incredible opportunity for gathering information about all aspects 
of our world and the people living in it [24]. Already research has shown the potential for mobile 
phones with built-in motion detectors carried by everyday users to detect earthquakes mere 
seconds after they begin [13]. Navigation companies frequently utilize mobile phone records to 
estimate traffic levels on busy highways [50]. How can computers efficiently utilize this prevalent 
sensing power of mobile phones without drastically impacting battery life or personal privacy 
concerns? This raises many computer science questions related to sensor placement, 
configuration, etc. 

Fifth, privacy of geographic information inside SBDs is an important challenge. While 
location information (GPS in phones and cars) can provide great value to users and industry, 
streams of such data also introduce spooky privacy concerns of stalking and geo-slavery [10]. 
Computer science efforts at obfuscating location information to date have largely yielded 
negative results. Thus, many individuals hesitate to indulge in mobile commerce due to concern 
about privacy of their locations, trajectories and other spatio-temporal personal information [25]. 
Spatio-temporal computing research is needed to address many questions such as the 
following: “whether people reasonably expect that their movements will be recorded and 
aggregated...”? [32]. How do we quantify location privacy in relation to its spatio-temporal 
precision of measurement? How can users easily understand and set privacy constraints on 
location information? How does quality of location-based service change with variations in 
obfuscation level? 

Sixth, SBD can also be used to make predictions about a broad range of issues 
including the next location of a car driver, the risk of forthcoming famine or cholera, or the future 
path of a hurricane. Such predictions would challenge the best of machine learning and 
reasoning algorithms, including directions with geospatial time series data. Many current 
techniques assume independence between observations and stationarity of phenomena. Novel 
techniques accounting for spatial auto-correlation and non-stationarity may enable more 
accurate predictions. How can new techniques remain computationally efficient while 
incorporating auto-correlation and non-stationarity while remaining computationally efficient? 

5. CONCLUSIONS 

Increasingly, mobility datasets are of a size, variety, and update rate that exceed the 
capability of spatial computing technologies. This paper addresses the emerging challenges 
posed by such datasets, which we call Spatial Big Data (SBD), specifically as they apply to 
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mobility services (e.g., transporation and routing). SBD examples include trajectories of cell-
phones and GPS devices, vehicle engine measurements, temporally detailed (TD) road maps, 
etc. SBD has the potential to transform society. A recent McKinsey Global Institute report 
estimates that personal location data could save consumers hundreds of billions of dollars 
annually by 2020 by helping vehicles avoid congestion via next-generation mobility services 
such as eco-routing. Eco-routing may leverage various forms of Spatial Big Data to compare 
routes by fuel consumption or greenhouse gas (GHG) emissions rather than total distance or 
travel-time. 

However, the envisaged SBD-based next-generation mobility services pose several 
challenges for current routing techniques. First, SBD requires a change in frame of reference, 
moving from a global snapshot perspective to the perspective of an individual object traveling 
through a transportation network. Second, SBD magnifies the impact of partial information and 
ambiguity of traditional routing queries specified by a start location and an end location. For 
example, traditional routing identifies a unique (or a small set of) route(s), given historical and 
current travel-times. In contrast, SBD may identify a much larger set of solutions, e.g., one route 
each for thousands of possible start-times in a week, significantly increasing computational 
costs. Third, SBD challenges the assumption that a single algorithm utilizing a specific dataset 
is appropriate for all situations. The tremendous diversity of SBD sources substantially 
increases the diversity of solution methods. For example, methods for determining fuel efficient 
routes leveraging engine measurement and GPS track datasets may be quite different from 
algorithms used to identify minimal travel-time routes exploiting temporally detailed roadmaps. 
Newer algorithms will be needed as new SBD becomes available, creating demand for a flexible 
architecture to rapidly integrate new datasets and associated algorithms. Other challenges 
include geo-sensing, privacy, prediction, etc. 
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