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1. Rationale and Challenges for Massive Data Stream Processing on the Cloud 

The ubiquity of mobile devices, location services, and sensor pervasiveness, e.g., as in smart city initiatives, call for 

scalable computing platforms and massively parallel architectures to process the vast amounts of the generated streamed 

data. Cloud computing provides some of the features needed for these massive data streaming applications. For 

example, the dynamic allocation of resources on an as-needed basis addresses the variability in sensor and location data 

distributions over time. However, today’s cloud computing platforms lack very important features that are necessary in 

order to support the massive amounts of data streams envisioned by the massive and ubiquitous dissemination of 

sensors and mobile devices of all sorts in smart-city-scale applications. To support massive data stream processing, 

cloud platforms need to be extended in the following directions: 

1.1 Hybrid memory-based and disk-based processing: Cloud platforms are typically designed for data-intensive 

disk-based applications. For massive data streaming applications, disks need to be replaced by distributed main-memory 

buffers at all the various layers. For example, distributed file systems or distributed disk-based databases are to be 

replaced by a memory-based online data stream acquisition layer that continuously receives streamed inputs via network 

sockets and stores them into distributed memory buffers. Disk storage has to be eliminated from the various other layers 

of massively parallel systems. For example, in a Map/Reduce scenario [4], the communication layer between the 

mappers and the reducers also has to be memory-based. It is important to point out that even for massive data streaming 

applications; combined memory- and disk-based platforms have to be integrated to answer user queries. For example, 

moving objects in the form of spatiotemporal data streams that are processed in memory will also need access to a road 

network that is stored in the disk-based platform. A typical continuous query on the moving objects’ data streams would 

also have to access the disk-based road-network data. Therefore, a hybrid stream- and disk-based parallel architecture is 

needed for these applications. 

1.2 Dynamic rate-based load-balancing and multi-stream partitioning: Typically, to achieve load balancing, 

distributed files or tables are partitioned based on their sizes and on the computing power of each of the participating 

machines, i.e., a more powerful machine claims a bigger portion of the data to process. In massively parallel streaming, 

the equivalent is to perform rate-based partitioning, i.e., the data streams with high rates are to be split into multiple 

processing units to avoid buffer overflows and load shedding. Additionally, slow streams needs to be bundled together 

to avoid under-utilization of resources. Therefore, three load balancing operations are speculated for data streams, 

namely, split, bundle, and migrate. 

1.3 Fault-tolerance and stream replication: In batch cloud systems, data is replicated multiple times to guarantee 

availability of disk-data despite of disk, machine, and rack failures [e.g., as in [3]). In a massive data streaming cloud, 

most likely, systems cannot afford to redundantly replicate streamed data multiple times as data is continuously 

arriving. Novel approaches have to be developed to achieve fault tolerance for massive streaming environments.  

1.4 Continuous and progressive window-based processing: In contrast to a batch mode of operation, cloud 

platforms have to process streamed data continuously using some notion of system pulse or beat, where between two 

pulses; newly arriving streamed data that gets accumulated into the memory buffers during the previous pulse are 

consumed and processed while more data arrives. Because data is infinite, some notion of scoping or windowing is 

needed. Distributed and reliable memory-based maintenance of window states and intermediate results that are 

accessible to all cloud processing units across pulses is necessary to guarantee correctness and progressive output that 

builds upon that intermediate state. 

1.5 Online data stream summarization and analytics: In addition to the online processing of the massive data 

streams, data summarization and online analysis of the streamed data have to take place at various spatial and temporal 

granularities. This online data analytics component will have access to the memory-based streamed data and their 

summaries as well as to the disk-based related data, e.g., the road-network data. Phenomena detection, tracking, 

prediction, and emergency response are example functionalities at this level.  

 

2. Rationale and Challenges for Extensible Context Awareness 
Extensibility architectures have been proposed in the early 1980’s to address the needs of emerging applications, e.g., as 

in extensible database servers. Although useful, these extensibility features are not adequate as they do not capture a key 

sensitive parameter in social networks, and database and web search applications, which is the "context" of the user or 
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query issuer. For example, in location-service architectures, the location of the user or the query issuer is a sensitive 

parameter. In privacy-aware "Hippocratic" database systems [1], the identity of the user or query issuer is a sensitive 

parameter. In temporal databases, the time the query is issued is a sensitive parameter. In a location-aware social 

network, both the location and the identity of the user are sensitive parameters. Instead of tailoring a system for each 

sensitive parameter or each combination of sensitive parameters, we can make the system aware of the notion of 

“contexts” or “sensitive parameters” related to the user or query issuer. By using “contexts” as an abstraction, we can 

eliminate the need for tailoring specialized engines for each new context. Devising a general context-aware server will 

eliminate the need for the costly tailoring of a specialized server, e.g., a location server, a temporal DBMS, or a 

combined Hippocratic location-aware database server, since space, time, and identity of both the user or query issuer 

and the underlying database objects are treated as contexts. One can instantiate a new specialized server by defining 

appropriate contexts using context definition and manipulation languages. An extensible context-aware system should 

provide: 

2.1 User or query-issuer contexts: These are high-level interfaces to define the user's or query issuer's contextual 

interfaces. This context reflects the situation of the query issuer, e.g., the query issuer's location, the time the query is 

issued, the identity of the query issuer, or even the temperature or the weather conditions surrounding the query issuer. 

A Context-aware server should be able to make use of these contexts when responding to a user's request. 

2.2 Objects' reciprocal contexts: These are high-level interfaces to define the reciprocal contexts of the database 

objects. These object contexts will reflect on or reciprocate the user's or query issuer's registered contexts, e.g., the 

location of the database objects, the time duration of an object (or when the object can be available for querying, e.g., as 

in a restaurant's opening hours when a user is asking for a close-by restaurant), and the identity of the object (or the ids 

of the query issuers or classes of query issuers that are allowed to access the object as in privacy-aware database 

systems). 

2.3 Binding mechanisms: The extensible context-aware server should have high-level interfaces that dynamically 

bind the contexts of the query issuer with those of the database objects. For example, binding the location and identity 

of the query issuer to the location and privacy profiles of social network objects can realize a location-aware social 

network. 

2.4 Performance: The declarative definition of contexts in context-aware systems can have a strong impact 

provided that performance of these systems is competitive to those of tailored systems. The efficient realization of 

context-aware database management systems is one of the vital challenges. Related to the issue of performance is that of 

indexing. In contrast to building tailored indexing methods, e.g., for the spatial locations of objects, or for temporal 

intervals, can one construct generalized indexing techniques for contexts? 

2.5 Dynamic context profiles: In many application scenarios, changes take place in the contexts, e.g., some active 

contexts may become inactive, inactive ones may become active, or new contexts get introduced. Another form of 

change is that the contextual values themselves within a context may change, e.g., the surrounding temperature may 

change or the location of a moving object may change, etc. These changes may affect the query being executed. This is 

similar in spirit to mid-query reoptimization [7]. However, the difference is that when the contexts change, the system 

may need to augment the query being executed by additional predicates that reflect the changes in the contexts. 

 

3. Where We Stand 
M3 [2] is a prototype data streaming system that is being realized at Purdue using Hadoop [3] and that eliminates all of 

Hadoop's disk layers, including the distributed file system (HDFS), and the disk-based communication layer between 

the mappers and the reducers. So far, M3 realizes features 1.1-1.4 above except that as of now, M3 handles only 

streaming data and does not handle queries that mix streaming with disk-based data. M3 extends Hive [9] to support 

streaming and continuous SQL querying using SyncSQL-like extensions [6]. Context awareness as an extensible vehicle 

has been demonstrated separately in Chameleon [5] based on extensions to PostgreSQL [8]. We are currently studying 

performance issues and general context-based indexing techniques as a step towards realizing context awareness in M3. 
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