Leveraging Cloud for Distributed Mobile Apps

Suman Nath
Microsoft Research
A new class of applications ...

• Find where my friends are now
• Alert me whenever my friends are near me
• Send coupons when near Seattle Starbucks
Examples

Many such apps in iOS, Android, and Windows Phone marketplaces
Context-aware Cloud-edge Apps

- powerful cloud
- continuous connectivity
- Sensors-equipped edge-devices
- Contexts: location, group, activity
CACE Platform

- Context-aware Cloud-edge app platform
- Goals:
 - Simplify programming
 - Rich, efficient runtime
 - Reliable, privacy-preserving context
 - ...

- Current prototype: runs on Windows Azure and Windows Phone
CACE Platform

Simple programming model

Abstracted as continuous queries on streaming data
Temporal SQL (Microsoft StreamInsight LINQ)

15 lines of code for FriendFinder

Cloud

Declarative specification
Debugging monitoring
CACE Platform

- Simple programming model
- Runtime optimization for energy, bandwidth, etc.

Dynamically move tasks among phones and Cloud to minimize resource usage

Runtime

Cloud

Runtime

Runtime
CACE Platform

- Simple programming model
- Runtime optimization for energy, bandwidth, etc.
- Robust context inference
- Privacy and security

Context classifiers

Cloud

Energy-efficient sensing
Robust classifiers based on many users
Privacy-preserving
Cloud is the key
(We are from Seattle!)

• Rendezvous point for social apps
 – ‘Emulate’ phone-to-phone communication

• Data collection place
 • Collect data from many users to train robust classifiers
 – Train voice models to identify who with you

• Offloading expensive tasks
 – Static: e.g., speaker identification
 – Dynamic
Offloading tasks

Where to run task? Cloud? Which phone?

Not trivial for large social graph
Offloading sensing: GPS

- Not regular GPS replacement
- Location-based services (e.g. mobile search)
- Batched location estimation (e.g. path prediction)
- Delay-tolerance positioning (e.g. geo-tagging photos)
- Crowdsourcing

Mobile phone sends to server:
- Code phases
- Cell tower ID
- Time stamp

Server:
- Computes NMS
- Computes mobile location

LEAP: A Low Energy Assisted GPS for Trajectory-Based Services, Ramos et al. Ubicomp 2011
Cloud is helpful for ...

- Inter-device communication
- Data collection, training
- Offloading computation and sensing
- Inter-device synchronization
- Runtime visibility of apps
- Integration with existing cloud-based services
- Etc.
Challenge: Simple Programming

• Simple programming model
 – Today: C++, Java, C#

• Debugging tools
 – Limited for distributed apps

• Runtime monitoring
 – Today: Flurry in sourcecode, on single phone app
Challenge: Data

• Lack of data
 – to train context inference models
• Quality of data
• Lack of incentives
• Possible solution:
 – Monitory incentive (like many crowdsourcing platform)
 – Not clear how to price data
Challenge: Privacy Guarantee

• No intuitive definition of privacy
• Guarantee privacy without hurting utility much
 – 2/3 rule: privacy, utility, efficiency

• Trickier for context-aware apps
• Give user control over her data

“Sorry, I can’t discuss my childhood. Before I could leave home I had to sign a non-disclosure agreement.”
My wishlist

• Simplify programming, debugging, and runtime visibility

• Without affecting my phone battery much

• Train classifiers with massive, good-quality data

• Respect my privacy
 – Let me control my data, let me revoke if needed
Thank you