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Abstract

This paper presents a novel algorithm for Incremen-

tal and General Evaluation of continuous Reverse Nearest

neighbor queries (IGERN, for short). The IGERN algorithm

is general as it is applicable for both the monochromatic

and bichromatic reverse nearest neighbor queries. The in-

cremental aspect of IGERN is achieved through determin-

ing only a small set of objects to be monitored. While pre-

vious algorithms for monochromatic queries rely mainly on

monitoring six pie regions, IGERN takes a radical approach

by monitoring only a single region around the query object.

The IGERN algorithm clearly outperforms the state-of-the-

art algorithms in monochromatic queries. In addition, the

IGERN algorithm presents the first attempt for continuous

evaluation of bichromatic reverse nearest neighbor queries.

The computational complexity of IGERN is presented in

comparison to the state-of-the-art algorithms in the mono-

chromatic case and to the use of Voronoi diagrams for the

bichromatic case. In addition, the correctness of IGERN in

both the monochromatic and bichromatic cases are proved.

Extensive experimental analysis shows that IGERN is effi-

cient, is scalable, and outperforms previous techniques for

continuous reverse nearest neighbor queries.

1 Introduction

A recent trend of sensor networks and location-based en-

vironments has been on the rise in the past decade. These

systems have been assimilating into real world applications

such as the enhanced 911 services, army strategic planning,

retail services, and mixed-reality games. The continuous

movement of data objects within these applications calls

for new query processing techniques that scale up with the

high rates of location updates. While there have been nu-

merous work for addressing continuous range queries (e.g.,

see [5, 8, 13, 15, 19]) and nearest neighbor queries (e.g.,

see [9, 17, 23, 27, 31]), there is still a lack of research in
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addressing continuous reverse nearest neighbor queries.

There are two cases of Reverse Nearest Neighbor queries

(RNN), namely, monochromatic RNN and bichromatic

RNN [12]. In the monochromatic RNN, all moving data

and query objects are of the same type. Thus, a data object

o is considered a reverse nearest neighbor to a query ob-

ject q if there does not exist another data object o′ where

dist(o, o′) < dist(o, q). Applications of the continuous

monochromatic RNN include mixed reality games (e.g.,

Botfighters) where the objective is to shoot only those play-

ers that are nearest to you. Thus, each player should monitor

her own reverse nearest neighbors to avoid their shootings.

In the bichromatic RNN, there are two distinct object types

A and B. Thus, a data object of type B, oB , is consid-

ered a reverse nearest neighbor to a query object of type

A, qA, if there does not exist another object of type A, o′A,

where dist(oB , o′A) < dist(oB , qA). Applications of the

continuous bichromatic RNN include army strategic plan-

ning where a medical unit A in the battlefield is always in

search for wounded soliders of type B in which A is their

nearest medical unit. RNN queries are also crucial in data

mining applications where the RNNs of a query point q are

those objects on which q has significant influence [12, 18].

Most of the previous work on reverse nearest neighbor

queries focus on snapshot queries in static environments,

i.e., the continuous movement of both the query and data

objects are not taken into account (e.g., see [1, 3, 12, 21,

22, 24, 29, 30]). Up to the authors’ knowledge, the CRNN

algorithm [26] is the only attempt to evaluate continuous

RNN queries. However, CRNN is applicable only to mono-

chromatic queries where there is no direct extension for the

case of bichromatic RNN. The main idea of CRNN is to

divide the whole spatial space into six pie regions where

each region is monitored independently for potential reverse

nearest neighbors. Such idea has been widely employed for

most of the snapshot RNN algorithms (e.g., see [21]) as it is

based on the theoretical foundation that there can be up to

six answers for any monochromatic RNN query [21].

In this paper, we present a novel algorithm for Incre-

mental and General Evaluation of continuous Reverse Near-
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est neighbor queries (IGERN, for short). IGERN is a uni-

fied framework that is applicable to both the monochromatic

and bichromatic RNN queries. The IGERN algorithm goes

beyond the idea of six pies in evaluating monochromatic

RNN queries. Furthermore, the IGERN algorithm provides

the first attempt for continuous evaluation of bichromatic

RNN queries. The main idea of both the monochromatic

and bichromatic IGERN algorithms is to initially identify

a single region r around the query object and a set of ob-

jects S such that only r and S need to be monitored to

trigger subsequent changes of the answer. The incremen-

tal aspect of IGERN comes from the fact that each execu-

tion instance of IGERN updates the shape of r and the ob-

jects in S. Then, subsequent executions of IGERN will need

to monitor only r and S rather than monitoring the whole

space. With its incremental nature, IGERN is a scalable al-

gorithm that scales up for large numbers of moving objects

and queries in highly dynamic environments. In general, the

contributions of this paper can be summarized as follows:

1. We propose the IGERN algorithm for monochromatic

continuous RNN queries that goes beyond the tradi-

tional method of dividing the space into six pie regions.

2. We propose the first bichromatic continuous RNN al-

gorithm within the IGERN framework.

3. We prove the correctness of IGERN by proving its:

(a) accuracy, i.e., a returned result by IGERN is an ex-

act RNN, and (b) completeness, i.e., IGERN returns

all possible RNNs.

4. We give analytical and experimental evidence that

IGERN outperforms previous approaches for both

monochromatic and bichromatic RNNs.

The rest of this paper is organized as follows. Sec-

tion 2 highlights the related work. The monochromatic

and bichromatic algorithms of IGERN are described in Sec-

tions 3 and 4, respectively. The correctness proof of IGERN

is given in Section 5. Section 6 gives an analytical analy-

sis of IGERN. Experimental evidence that the IGERN algo-

rithm outperforms previous algorithms is given in Section 7.

Finally, Section 8 concludes the paper.

2 Related Work

There is a recent interest in developing new contin-

uous query processors to cope with the recent advances

in dynamic location-aware environments [10, 14]. As a

result, new algorithms have been developed for various

types of continuous location-based queries, e.g., continu-

ous range queries [5, 8, 13, 15, 19], continuous nearest

neighbor queries [9, 17, 23, 27, 31], and continuous aggre-

gates [7, 11]. Although reverse nearest neighbor queries are

of the same importance as these query types, there is not

much work in developing efficient algorithms for continu-

ous reverse nearest neighbor queries.

Various algorithms are proposed for snapshot reverse

nearest neighbors (RNNs) in different environments, e.g.,

euclidian space [12, 21, 22, 28], metric space [1, 24],

high-dimensional space [20], ad-hoc space [29], and large

graphs [30]. In this paper, we mainly focus on the euclid-

ian space in which it is proved that there are at most six

reverse nearest neighbors for the monochromatic case [21].

By utilizing this property, a filter-refine approach has been

introduced by dividing the spatial space into six pie regions.

Then, six nearest neighbor objects (one object in each pie)

are used as filters to limit the search space. A completely

different approach, denoted as TPL [22], relies mainly on

recursively filtering the data by finding perpendicular bisec-

tors between the query point and its nearest object.

Up to the authors’ knowledge, there is only one algo-

rithm, termed CRNN [26], for continuous evaluation of re-

verse nearest neighbor queries. CRNN extends the idea of

dividing the space into six pies, originally developed for

snapshot queries [21], to dynamic environments. As a re-

sult, CRNN monitors each pie region along with six mov-

ing objects at every time interval. However, CRNN has two

main disadvantages: (1) CRNN is limited to only mono-

chromatic RNN queries and (2) CRNN always assumes a

constant worst-case scenario at every time interval where

it is assumed that there are always six RNNs. Such draw-

back comes from the fact that CRNN ignores the relation

between the neighboring pies.

Our proposed algorithm, IGERN, avoids the drawbacks

of CRNN by being applicable to both the monochromatic

and bichromatic RNNs. In addition, IGERN adapts itself

based on the current data to monitor only one closed region

and less than six objects as opposed to constantly monitor-

ing six regions and six objects in CRNN.

3 Continuous Evaluation of Monochromatic

Reverse Nearest Neighbors

This section presents the IGERN algorithm for mono-

chromatic reverse nearest neighbor queries. The IGERN

algorithm maintains a grid data structure G of N ×N equal

size cells. Each cell c ∈ G keeps track of the set of objects

that lie within the cell boundary. In general, the IGERN

algorithm has two main steps, namely, the initial and incre-

mental steps. The initial step is executed only once at the

query issuing time T0 while the incremental step is triggered

every T time units throughout the life time of the continu-

ous query. The main idea is that the initial step reports the

first query answer along with a bounded region and a set of

objects to be monitored within the incremental step. Then,

the incremental step continuously updates the query answer

while changing the monitored region and the monitored set

of objects. The initial and incremental steps are described

in Sections 3.1 and 3.2, respectively, while Section 3.3 gives

a general discussion about IGERN.
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Algorithm 1 Pseudo code for the Mono Initial Step

1: Function INITMONOIGERN(Query q)

2: RNNcand← ∅, Mark all grid cells G as alive

{Phase I: Bounded Region}
3: while (oj ← the nearest object to q in the alive cells) 6= NULL do

4: RNNcand← RNNcand ∪oj , bj ← The ⊥ bisector of q and oj

5: Mark grid cells from bj to the furthest boundaries from q as dead

6: end while

{Phase II: Verification}
7: RNN← RNNcand - {Objects that do not have q as the nearest object}
8: return RNN, RNNcand

3.1 Step 1: Getting the Initial Answer

The initial step of IGERN has three main objectives:

(1) Obtaining a bounded region r around the query object q

which will be monitored in the incremental step, (2) Iden-

tifying a set of objects RNNcand that need to be monitored

in the incremental step, and (3) Identifying the set of ini-

tial reverse nearest neighbor objects (RNN ⊆ RNNcand) to

q. Algorithm 1 gives the pseudo-code of the IGERN initial

step. The input is the query object q while the output con-

sists of the two sets RNN and RNNcand. Initially, RNNcand

is empty while all grid cells in the grid data structure G are

set as alive, i.e., every cell has the potential of containing re-

verse nearest neighbors of q (Line 2 of Algorithm 1). Then,

the initial step has the following two main phases:

Phase I: Bounded Region. This phase is concerned

with the first two objectives of the initial step. The bounded

region phase starts by finding the object oj as the nearest

object to the query q within all alive cells (Line 3 of Algo-

rithm 1). Then, object oj is considered as a candidate to be

a reverse nearest neighbor, i.e., oj is added to RNNcand. A

bisector bj between oj and q indicates that all objects be-

tween bj and the furthest space boundaries from q would

be closer to oj than q. Thus, all the grid cells between bj

and these boundaries are marked as dead, i.e., there can-

not be any reverse nearest neighbor to q within these cells

(Lines 4-5 of Algorithm 1). This phase continues to run un-

til there are no objects within the alive cells. Figure 1 gives

an example of the initial step with nine objects o1 to o9 and

a query object q. o2 is the nearest object to q while b2 is its

corresponding bisector (Figure 1a). Thus, all cells above b2

are shaded, i.e., marked as dead. Such process continues as

o6 followed by o4 are identified as the nearest objects to q

within the alive cells and the bisectors b6 and b4 are drawn

(Figure 1b). As there are no more objects within the alive

cells, the candidate set becomes RNNcand = {o2, o4, o6}.

Phase II: Verification. In this phase, we go through all

objects in RNNcand and only those objects that q is their

nearest are considered as RNNs (Line 7 in Algorithm 1). In

Figure 1c, the dotted circles indicate the nearest neighbor

test for each object in RNNcand. Thus, RNN = {o2, o6}
where o2 and o6 are the reverse nearest neighbors to q.

Algorithm 2 Pseudo code for Mono Incremental Step

1: Function INCRMONOIGERN(Query q, set RNNcand)

2: if q or any objects in RNNcand have moved then

3: Redraw the bisectors between q and all objects in RNNcand

4: Only the cells between q and the bisectors are marked as alive.

5: end if

6: if there is any object o within the alive cells then

7: Tighten the region as in Phase I of Algorithm 1 (Lines 3 to 6)

8: For any two objects oi, oj ∈ RNNcand, remove object oi from

RNNcand only if dist(oi, oj) < dist(oi, q)
9: end if

10: RNN← RNNcand - {Objects that do not have q as nearest object}
11: return RNN, RNNcand
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Figure 1: Example of the monochromatic initial step

3.2 Step 2: Incremental Maintenance

The incremental step of IGERN is repetitively executed

every T time units. Algorithm 2 gives the pseudo-code of

the incremental step. The input to this algorithm is the query

object q and the set RNNcand that came from either the ini-

tial step at time T0 or a previous execution of the incremen-

tal step. Upon its execution, the incremental step checks for

three different scenarios: (1) The query object q moves to a

new location (Line 2 in Algorithm 2), (2) At least one of the

objects in RNNcand moves to a new location (Line 2 in Al-

gorithm 2), and (3) A new object moves into the alive cells

(Line 6 in Algorithm 2). If none of these scenarios took

place, then the incremental step will only verify the current

query answer in a similar way to the verification phase in

the initial step (Line 10 in Algorithm 2) while the RNNcand

set will not be changed. However, if any of these three sce-

narios took place, then the IGERN incremental step needs

to perform more computations in order to efficiently main-

tain the query answer.

The incremental step starts by checking the first two

events, i.e., if either the query object q or any of the objects

in the candidate list have moved (Line 2 in Algorithm 2). If

this is the case, then new bisectors will be drawn from q to

the objects in RNNcand. Then, only the cells between q and

its bisectors are considered alive while all other grid cells

are considered as dead. Figures 2a and 2b give the cases

when only the query q moves and all objects in RNNcand

move, respectively. In both cases, the bisectors from q to
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Figure 2: An example of the monochromatic Incremental step

the objects in RNNcand o2, o4, and o6 are redrawn and the

set of alive cells are adjusted.

Then, the incremental step checks the third scenario, i.e.,

a new object is found in an alive cell. This condition also

captures the new alive cells that result from redrawing the

bisectors upon the movement of any of the monitored ob-

jects. If there are no objects in the alive cells, then only the

verification step is needed (Line 10 in Algorithm 2). In our

example, RNN = {o2, o6} in Figures 2a while RNN = {o2}
in Figures 2b. However, if there is one or more objects in

the alive cells, we will tighten the bounded region by find-

ing the nearest objects within the alive cells and drawing

the corresponding bisectors (Line 7 in Algorithm 2). Then,

the list RNNcand will be cleaned by removing any object

that could not be a reverse nearest neighbor (Line 8 in Al-

gorithm 2). Finally, the answer is verified (Line 10 in Algo-

rithm 2). Figure 2c depicts the case when o9 moves inside

an alive cell. The object o9 is added to RNNcand while ob-

ject o4 is removed. Also, the bisector b9 is drawn and the

shaded cells are adjusted. Finally, RNN = {o2, o9}.

3.3 Discussion

Notice the difference between the IGERN incremental

step and the state-of-the-art RNN algorithm, CRNN [26],

for monochromatic continuous reverse nearest neighbors.

CRNN always monitors six different bounded regions, six

candidate objects, and the query object while IGERN mon-

itors only one single bounded region, always less than six

candidate objects (experimental study shows an average of

3.3 monitored objects), and the query object. Furthermore,

the size of the monitored region in IGERN is always less

than those of CRNN as it is more likely to get open-ended

regions in CRNN than IGERN. Thus, IGERN will always

monitors an area that is about one sixth of the area moni-

tored by CRNN. Also, IGERN always monitors about half

of the objects monitored by CRNN. More details about the

difference between the two algorithms will be discussed

analytically in Section 6 and experimentally in Section 7.

The initial step in IGERN is similar to the static approach

TPL [22] with the difference that we embed new functional-

ities to produce a set of objects that will be monitored later

in the incremental step.

4 Continuous Evaluation of Bichromatic Re-

verse Nearest Neighbors

Unlike the monochromatic case where all objects are of

the same type, in bichromatic reverse nearest neighbors, we

distinguish between two types of objects A and B. For a

query object of type A, the objective is to find data objects

of type B in which the query point is their nearest A ob-

ject. While the number of reverse nearest neighbors in the

monochromatic reverse nearest neighbor case is limited to

only six, in the bichromaatic case, there is no limit on the

number of reverse nearest neighbors. Instead, it could be

the case that for a query object A, all data objects of type B

are considered as its reverse nearest neighbors.

With these fundamental differences between the mono-

chromatic and bichromatic reverse nearest neighbors, the

IGERN algorithm still keeps the same flavor and the same

framework to handle both the monochromatic and the

bichromatic reverse nearest neighbor queries. This section

presents the IGERN algorithm for bichromatic reverse near-

est neighbor queries, which is basically an adaptation of the

monochromatic IGERN algorithm to work for the bichro-

matic case. Thus, as in the monochromatic case, a grid data

structure G is maintained where each cell c ∈ G keeps track

of the moving objects within its boundaries. Also, similar

to the monochromatic case, the bichromatic IGERN has two

main steps, the initial step that is executed only once to re-

port the first query answer and the incremental step that is

triggered every T time units to continuously maintain the

query answer.

Throughout this section, Figure 3 gives a running exam-

ple of 13 moving objects of two different types: six circle

objects of type A, oA1 to oA6, six square objects of type B,

oB1 to oB6, and a query object of type A, qA. The objective

is to find objects of type B in which the query point qA of

type A is their nearest A object. As a notation, objects oA

and oB are of types A and B, respectively, while sets SA

and SB contain only data objects of types A and B, respec-

tively. The initial and incremental steps are described in

Sections 4.1 and 4.2, respectively, while Section 4.3 gives a

general discussion about the bichromatic IGERN algorithm.

4.1 Step 1: Getting the Initial Answer

For a query object of type A (qA), the objectives of

the initial step in the bichromatic IGERN algorithm are:

(1) Obtaining a bounded region r around qA to be moni-

tored in the incremental step, (2) Identifying a set objects

of type A (NNA) that need to be monitored later as their

movement may trigger a change of answer, and (3) Identi-

fying the set of initial reverse nearest neighbors of type B

(RNNB) to qA. Algorithm 3 gives the pseudo-code for the

initial step. The input is the query object qA while the out-

put is the two sets RNNB and NNA. Initially, the set NNA is

empty while all grid cells in G are set to alive, i.e., all cells

4



Algorithm 3 Pseudo code for the Bi Initial Step

1: Function INITBIIGERN(Query qA)

2: NNA← ∅, Mark all grid cells G as alive

{Phase I: Bounded Region}
3: while (oA← the nearest A object to qA in alive cells) 6= NULL do

4: NNA← NNA ∪ oA, b← The bisector of qA and oA

5: Mark grid cells from b to the furthest boundaries from qA as dead

6: end while

{Phase II: Verification}
7: RNNB ← ∅
8: for each object oB ∈ the alive cells do

9: oA← is the nearest object of type A to oB

10: if oA = qA then

11: RNNB ← RNNB ∪ oB

12: else

13: NNA← NNA ∪ oA, b← The bisector of qA and oA

14: Mark grid cells from b to the furthest boundaries of qA as dead

15: For any two objects oA, oA′ ∈ NNA, remove object oA from

NNA only if dist(oA, oA′ ) < dist(oA, qA)
16: end if

17: end for

18: return RNNB , NNA

have the potential of containing a reverse nearest neighbor

of qA. Then, the initial step has the following two phases:

Phase I: Bounded Region. This phase starts by finding

object oA that is nearest to qA in the alive cells (Line 3 in Al-

gorithm 3). Then, object oA is added to the list of A objects

(NNA) that will be monitored later in the incremental step.

Similar to the monochromatic case, the bisector b between

qA and oA is drawn while all the grid cells between b and

the space boundaries that are furthest from qA are marked

as dead (Lines 4-5 in Algorithm 3). Such process continues

until there are no more objects of type A in any of the alive

cells. In Figure 3a, the nearest neighbor search in the alive

cells results in finding oA5, oA3, and oA1, respectively, and

the corresponding bisectors b5, b3, and b1 are drawn until

the alive cells (non-shaded cells) do not contain any square

A objects. Thus, NNA = {oA1, oA3, oA5}.

Phase II: Verification. This phase aims to find the

current reverse nearest neighbors, tighten the monitored

bounded region, and modify the list of objects that need to

be monitored in the incremental step. The main idea is to

go through every single object oB within the alive cells and

check for its nearest A object, oA (Line 9 in Algorithm 3).

If it ends up that oA is the query object qA, then oB is con-

sidered as a reverse nearest neighbor to qA, thus added to

the set RNNB (Line 11 in Algorithm 3). However, if oA

is not qA, then oA is considered as one of the objects to

be monitored, a bisector is drawn between qA and oA, the

corresponding grid cells are marked as dead, and the set

NNA is cleaned to make sure that it contains the minimal

required objects that need to be monitored (Lines 13-15 in

Algorithm 3). Figure 3b depicts such scenario where there

are three B objects in the alive cells, oB3, oB4, and oB5.

Upon testing for their nearest A objects (the dotted circles

Algorithm 4 Pseudo code for Bi Incremental Step

1: Function INCRBIIGERN(Query qA, set NNA)

2: if qA or any objects ∈ NNA have moved then

3: Redraw the bisectors between qA and all objects in NNA

4: Only the cells between qA and the bisectors are marked as alive

5: end if

6: if there is any object oB within the alive cells then

7: Tighten the region as in Phase I of Algorithm 3 (Lines 3 to 6)

8: For any two objects oA, oA′ ∈ NNA, remove object oA from NNA

only if dist(oA, oA′ ) < dist(oA , qA)
9: end if

10: Verify the answer as in Phase II of Algorithm 3 (Lines 7 to 17)

11: return RNNB , NNA
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Figure 3: An example of the bichromatic IGERN.

in Figure 3b), it turns out that only oB3, and oB4 are reverse

nearest neighbors while oB5 has oA4 as its nearest A object.

Thus, a bisector b4 is drawn between qA and oA4 and the

corresponding cells are shaded. Object oA4 is then removed

from the monitored nearest neighbors NNA because it is

closer to oA5 than qA. As a result, NNA = {oA1, oA3, oA5}
while RNNB = {oB3, oB4}.

4.2 Step 2: Incremental Maintenance

The incremental step of IGERN is repetitively executed

every T time units. Algorithm 4 gives the pseudo-code of

the incremental step where the input is the query object qA

and the set of monitored objects NNA that came from ei-

ther the initial step at time T0 or a previous execution of the

incremental step. The output is the current reverse nearest

neighbors RNNB and a modified set of objects NNA to be

monitored in the next execution instance of the incremen-

tal step. Similar to the monochromatic case of IGERN, the

incremental step of the bichromatic case checks for three

different scenarios: (1) The query object qA moves to a new

location (Line 2 in Algorithm 4), (2) At least one of the

objects in NNA moves to a new location (Line 2 in Algo-

rithm 4), and (3) A new object of type A moves into the

alive cells (Line 6 in Algorithm 4). If none of these scenar-

ios took place, then the incremental step will only verify the

current sets (RNNB and NNA) in a similar way to the verifi-

cation phase in the initial step (Line 10 in Algorithm 4).

However, if it is the case that either the query object qA

or one of the objects in NNA have moved, then new bisec-
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tors will be drawn from qA to the objects in NNA. Also, only

the cells between qA and the new bisectors are considered

alive (Lines 3-4 in Algorithm 4). Then, the incremental step

checks if a new object of type A is found in an alive cell.

Such a check also accommodates the new bounded region

formed by the movement of any of the monitored objects.

If there are no objects in any of the alive cells, then only

the verification step is needed (Line 10 in Algorithm 4).

However, if there is one or more objects of type A in the

alive cells, we will tighten the alive cells in a similar way

to the first phase in the initial step (Line 7 in Algorithm 4).

Then, the list NNA is cleaned by removing any object that

is not participating in drawing the bisectors (Line 8 in Al-

gorithm 4). Finally, the sets NNA and RNNB are verified

(Line 10 in Algorithm 4).

Figure 3c depicts the case where two of the monitored

objects have moved, namely, oA1 and oA3. Thus, new bi-

sectors will be drawn. Then, it turns out that object oB3

has oA3 as its nearest A object. Thus, oB3 is not a reverse

nearest neighbor to qA any more. The returned answer from

the incremental step will be NNA = {oA1, oA3, oA5} while

RNNB = {oB4}.

4.3 Discussion

IGERN is the first algorithm that addresses the contin-

uous bichromatic reverse nearest neighbor queries. One of

the main attractive features of the bichromatic IGERN is

that it is based on the monochromatic case, i.e., IGERN pro-

vides a unified framework for continuous evaluation of both

monochromatic and bichromatic reverse nearest neighbor

queries. In this sense, IGERN is more attractive to industry

and system-oriented research prototypes (e.g., [6, 16, 25])

as one framework would be enough for different cases. This

is in contrast to previous approaches for reverse nearest

neighbor queries that can solve only the monochromatic

case without any direct extension to the bichromatic case.

For example, monochromatic RNN algorithms that rely on

the fact that there could be only six reverse nearest neigh-

bors (e.g., [21, 26]) cannot be extended to the bichromatic

case where the number of reverse nearest neighbors could

be much greater than six. The initial step of the bichromatic

IGERN is similar to getting only the Voronoi cell around the

query object [2], however, we embed several functionalities

inside the algorithm for finding the Voronoi cell in order to

exactly maintain a minimal set of objects and a bounded

region that will be monitored in later executions of the in-

cremental step.

5 Proof of Correctness

In this section, we present the proof of correctness for

both the monochromatic and bichromatic IGERN algo-

rithms by proving that: (1) IGERN is accurate, i.e., an ob-

ject p returned by IGERN is an exact RNN, and (2) IGERN

is complete, i.e., IGERN returns all possible RNNs.

5.1 Monochromatic: Accurate and Complete

Theorem 1 For any query qT , executed at time T , an object

o returned by the monochromatic IGERN algorithm is an

exact reverse nearest neighbor to q.

Proof: Assume that for the query qT , IGERN returns an

object o which is not a reverse nearest neighbor to qT .

Then, there must be another object o′ where dist(o, o′) <

dist(o, q). However, both the initial and incremental steps

of IGERN are concluded by a verification phase which

guarantees that q is the nearest object to any returned ob-

ject o (Line 7 in Algorithm 1 and Line 10 in Algorithm 2).

Thus, object o′ cannot exist either in the initial or the incre-

mental step. Thus, q is the nearest object to o, and hence,

the object o returned by IGERN is an exact reverse nearest

neighbor to q. �

Theorem 2 For any query qT , executed at time T , the

monochromatic IGERN algorithm returns ALL reverse

nearest neighbors to qT .

Proof: Assume that for the query qT , IGERN did not return

an object o that is a reverse nearest neighbor to qT , i.e., qT

is the nearest object to o. Then, there are exactly two cases:

Case 1: o is in an alive cell. Phase I in the initial step of

IGERN continues to iterate till there are no objects located

in the alive cells (Lines 2-6 in Algorithm 1). Similarly, the

incremental step makes sure that there are no objects in the

alive cells (Line 7 in Algorithm 2). Thus, object o cannot

be located in any of the alive cells.

Case 2: o is in a dead cell. In the initial step, each bi-

sector bj between oj and q divides the space into dead and

alive cells such that any object o (other than oj ) in the dead

cells has dist(o, oj) < dist(o, q). Thus, q cannot be nearest

neighbor to o. If oj is an RNN to q, oj will be returned in

the verification phase. Thus, object o cannot be in a dead

cell. Similar argument holds for the incremental step.

From Cases 1 and 2, object o cannot exist. Thus, IGERN

produces all reverse nearest neighbors to q. �

5.2 Bichromatic: Accurate and Complete

Theorem 3 For any query qAT , of type A, executed at time

T , an object oB returned by the bichromatic IGERN algo-

rithm is an exact reverse nearest neighbor of type B to qA.

Proof: Assume that for the query qAT , the bichromatic

IGERN returns an object oB which is not a reverse near-

est neighbor to qA. Then, there must be another object

o′A where dist(oB , o′A) < dist(oB, qA). However, both

the initial and incremental steps of the bichromatic IGERN

concludes by a verification step which verifies that every

returned object oB has to have qA as its nearest A object.

Thus, object o′A cannot exist, and hence, the object oB re-

turned by the bichromatic IGERN is an exact reverse nearest

neighbor to qA. �
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Theorem 4 For any query qAT , of type A, executed at time

T , the bichromatic IGERN algorithm returns ALL reverse

nearest neighbors to qAT .

Proof: Assume that for the query qAT , the bichromatic

IGERN did not return an object oB that is a reverse near-

est neighbor to qA, i.e., qA is the nearest A object to oB .

Similar to the proof of Theorem 3, object oB is either in an

alive or a dead cell in which both cases cannot take place

in Algorithms 3 and 4. Thus, we conclude that object oB

cannot exist and the bichromatic IGERN produces all the

reverse nearest neighbors to qA. �

6 Analytical Comparison of RNN Algorithms

This section presents the cost model for three mono-

chromatic and two bichromatic algorithms. Namely for the

monochromatic case, we present the cost model for IGERN,

CRNN [26], and repetitive evaluation of the static TPL al-

gorithm [22]. For the bichromatic case, we present the cost

model for IGERN and the repetitive computations of the

static creation of Voronoi cells [2]. Finally, we compare

the cost model of IGERN with its counterparts for both the

monochromatic and bichromatic cases.

Monochromatic IGERN cost. Let mI be the cost func-

tion for the monochromatic IGERN algorithm. Then, for

a query q that is executed for T time units, mI(q) =
mIinit(q0)+ΣT

t=1mIincr(qt) where mIinit and mIincr are

the cost of the initial and incremental steps, respectively,

while qt is the execution of the query q at time t. Thus,

mI(q) = r0(NNc(q0) + NN(q0)) + ΣT
t=1(NNb(qt) +

rtNN(qt)) where rt is the number of objects that are can-

didates to be RNNs in time step t, (rt ≤ 6). NNc(qt),
NN(qt), and NNb(qt) represent the cost for the con-

strained, unconstrained, and bounded nearest neighbor al-

gorithms to qt, respectively. The constrained NN is done

only within the remaining alive cells (Line 3 in Algo-

rithm 1) while the unconstrained NN is performed in the

whole space (Line 7 in Algorithm 1) and the bounded NN

is performed only within a bounded region of the space

(Line 7 in Algorithm 2).

CRNN cost. Let C be the cost function for CRNN.

Then, C(q) = 6(NNc(q0)+NN(q0))+ ΣT
t=16(NNb(qt)+

NN(qt)) where NNc(qi), NN(qi), and NNb(qi) are sim-

ilar to those of the IGERN algorithm. Notice that CRNN

always monitors six regions and six RNN candidates re-

gardless of the data distribution. In addition, the bounded

NN search NNb is consistently repeated six times.

TPL cost. Let L be the cost function for a repeti-

tive evaluation of the static TPL approach. Then, L(q) =
ΣT

t=0rt(NNc(qt) + NN(qt)). As there is no incremen-

tal evaluation in TPL, all execution instances perform a

constrained nearest neighbor search followed by an uncon-

strained one for verification.

IGERN vs. CRNN. Based on our cost model, the cost

ratio between the monochromatic IGERN and CRNN is:
mI(q)
C(q) =

r0(NNc(q0)+NN(q0))+ ΣT

t=1
(NNb(qt)+rtNN(qt))

6(NNc(q0)+NN(q0))+ ΣT

t=1
6(NNb(qt)+NN(qt))

Thus, for any single time instance T , the ratio is r0

6 if

T = 0 and
NNb(qt)+rtNN(qt)
6NNb(qt)+6NN(qt)

for T > 0. Notice that for

each time instance T > 0, the bounded nearest neighbor

search is done only once in IGERN as opposed to six times

in CRNN. Also, the unconstrained nearest neighbor search

is performed only rt times in IGERN rather than exactly

six times in CRNN. Since rt ≤ 6, IGERN always achieves

better performance than CRNN.

IGERN vs. TPL. The cost ratio between the monochro-

matic IGERN and the reevaluation of the static TPL is:
mI(q)
L(q) =

r0(NNc(q0)+NN(q0))+ ΣT

t=1
(NNb(qt)+rtNN(qt))

ΣT

t=0
rt(NNc(qt)+NN(qt))

Thus, for any single time instance T , the ratio is one if

T = 0 while the ratio is
NNb(qt)+rtNN(qt)

rtNNc(qt)+rtNN(qt)
for T > 0.

Notice that the bounded nearest neighbor search in IGERN

is much less expensive than the constrained one in TPL as

the bounded case searches only within a small bounded re-

gion. In addition, the bounded search in IGERN is done

only once while the constrained search in TPL is done rt

times at each time instance. Thus, IGERN always achieves

better performance than the repetitive evaluation of TPL.

Bichromatic IGERN cost. Let bI be the cost func-

tion for the bichromatic IGERN algorithm. Then, for

a query of type A (qA) that is executed for T time

units, bI(qA) = bIinit(qA0) + ΣT
t=1bIincr(qAt) where

bIinit and bIincr are the cost of the initial and incremen-

tal steps, respectively, while qAt is the execution of the

query qA at time t. Thus, bI(qA) = a0NNc(qA0) +
b0NN(qA0) + ΣT

t=1(NNb(qAt) + btNN(qAt)) where at

and bt are the number of A objects that need to be monitored

and the number of B objects in the monitored bounded re-

gion, at time step t, respectively. NNc(qt), NNb(qt), and

NN(qt) are similar to those of the monochromatic IGERN

algorithm. Notice that the constrained NN is done only once

in the initial step while the bounded NN is done only once

at each execution of the incremental step.

Voronoi cost. Let V be the cost function for the con-

tinuous re-creation of a Voronoi cell around qA. Then,

V (qA) = ΣT
t=0atNNc(qt) + btNN(qt). The main idea

is that creating a new Voronoi cell is repeated at each time

step t.

IGERN vs. Voronoi cell. The cost ratio between the

bichromatic IGERN algorithm and repetitive creation of

Voronoi cells is:
bI(q)
V (q) =

a0NNc(q0)+b0NN(q0)+ ΣT

t=1
(NNb(qt)+btNN(qt))

ΣT

t=0
(atNNc(qt)+btNN(qt))

Thus for any single time instance T , the ratio is one if

T = 0 and
(NNb(qt)+btNN(qt))

(atNNc(qt)+btNN(qt))
for T > 0. Notice that

the bounded search in IGERN is much cheaper than the

constrained search in the Voronoi cell. Furthermore, the

bounded search in IGERN is done only one time at each
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Figure 4: Map of Hennepin County, MN, USA.

time instance while the constrained search is done at times

in the Voronoi cell construction. Thus, the bichromatic

IGERN achieves much better performance than repetitive

construction of Voronoi cells.

7 Experimental Results

In this section, we experimentally evaluate the perfor-

mance of IGERN for both the monochromatic (Section 7.2)

and bichromatic (Section 7.3) reverse nearest neighbors. In

the monochromatic case, we compare IGERN against the

state-of-the-art algorithm for continuous monochromatic re-

verse nearest neighbor queries CRNN [26]. However, for

the bichromatic case, IGERN is the first algorithm for con-

tinuous bichromatic reverse nearest neighbor queries. Thus,

IGERN is compared against a static approach of repetitive

computation of Voronoi cells [2]. To ensure consistency and

fairness among different approaches, we use the algorithm

in [31] as the underlying nearest neighbor search for all ap-

proaches of reverse nearest neighbor queries.

We use the Network-Based Generator of Moving Ob-

jects [4] to generate a set of moving objects and moving

queries. The input to this generator is the road map of Hen-

nepin County in Minneapolis (Figure 4). The output of the

generator is a set of moving objects that move on the road

network of the given city. Unless mentioned otherwise, we

generate 100K moving objects and a duration of 100 time

units. All experiments were performed on an Intel Pentium

IV CPU 2.0GHz with 512MB RAM.

7.1 Grid Size

Figure 5 gives the effect of increasing the grid size from

16×16 to 512×512. Although this experiment is performed

for the monochromatic IGERN, similar performance came

out from the bichromatic case. Figure 5a gives the num-

ber of cell changes for all objects as the grid size increases.

The number of cell changes is an indicator of the overhead

needed to maintain the grid structure. As more grid cells

are maintained, more updates need to take place. On the

other side, Figure 5b gives the CPU time when executing

the IGERN algorithm for different grid sizes. For small grid

sizes, IGERN encounters higher costs as each grid cell con-

tains large number of objects, hence, the underlying nearest

neighbor search would search within a lot of unnecessary
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objects. The performance becomes better when the grid size

increases to 64-128 as the nearest neighbor search is per-

formed within limited number of objects. However, more

increase in the grid size badly affect IGERN. This is mainly

because the cost of data updates for objects that change their

cells take place as has been depicted in Figure 5a. As a

compromise, in the rest of our experiments, we use a grid

structure of size 64.

7.2 Monochromatic RNNs

This section compares the monochromatic IGERN algo-

rithm to CRNN in terms of scalability and stability.

7.2.1 Scalability

Figure 6a gives the effect of increasing the number of mov-

ing objects from 20K to 100K on both IGERN and CRNN.

The average CPU time is taken over 100 time units. The

IGERN consistently performs better than CRNN. As the

number of objects increases, IGERN takes advantage of the

fact that it monitors only one region and less number of ob-

jects. On the other side, CRNN consistently monitors six

regions and six moving objects. Furthermore, the single

area monitored by IGERN is bounded while some of the

areas of CRNN may be open-ended based on the data dis-

tribution. As a result, the average CPU cost of IGERN is

much less than that of CRNN. Figure 6b gives the average

number of monitored objects in both IGERN and CRNN for
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different data sizes. While CRNN exactly monitors six ob-

jects, IGERN, on average, monitors about 3.3 regions. This

experiments supports the argument of Figure 6a in which

IGERN has much less CPU time than CRNN. In general,

the experiments in this section supports the analytical com-

parison of IGERN and CRNN as depicted in Section 6.

7.2.2 Stability

Figure 7a gives the execution of both IGERN and CRNN

for the first 20 time units. As both algorithms are designed

for continuous evaluation, the first time evaluation at time

T = 0, is more expensive than later time instances that

only maintains the current answer. However, IGERN con-

sistently gives better performance than CRNN. The stable

performance of IGERN for all time units T > 0 indicates

that the performance of the incremental step does not dete-

riorate over time. Also, we got similar performance when

running the same experiment for longer time periods.

Figure 7b gives the total accumulated time spent on one

execution of the initial step followed by a sequence of exe-

cutions of the incremental step for both IGERN and CRNN

for up to 100 time units. It is clear that when the query runs

for longer time periods, the amount of saving we achieve

with IGERN becomes much greater. Thus, IGERN consis-

tently gives a stable increase of performance over CRNN.

7.3 Bichromatic

This section compares the bichromatic IGERN algo-

rithm to a repetitive computation of static Voronoi cells in

terms of scalability and stability.

7.3.1 Scalability

Figure 8a gives the effect of increasing the number of mov-

ing objects from 20K to 100K on both IGERN and the

creation of a Voronoi cell. The IGERN algorithm con-

sistently gives better performance than Voronoi as IGERN

only needs to maintain the answer. The increase in CPU

time of IGERN with the increase of the number of objects is

much less than that of Voronoi. Thus, IGERN can scale well

to a large number of moving objects. Basically, IGERN
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takes advantage of the fact that it monitors only one region

and few number of objects rather than reconstructing the

answer at each time instance. This experiment supports the

analytical comparison of IGERN and Voronoi as depicted

in Section 6.

Figure 8b gives the number of monitored objects over the

course of execution for both the monochromatic and bichro-

matic reverse nearest neighbor queries. Basically, the con-

clusion from this figure is that IGERN almost has a sim-

ilar performance for both monochromatic and bichromatic

cases. Thus, even the case of bichromatic reverse nearest

neighbors is more complicated, however, IGERN can still

achieve similar performance for both cases.

7.3.2 Stability

Figure 9a gives the execution of both IGERN and repeti-

tive Voronoi for the first 20 time units. Only at the first

time instance (T = 0), Voronoi gives better performance.

This is basically, because IGERN use a modified version

of Voronoi cells to be able to reduce the amount of work

that will be needed later in the incremental step. Thus, for

all time instances T > 0, IGERN consistently gives much

higher performance than Voronoi. Also, the performance of

IGERN is stable over time as we got similar performance

when running the same experiment for longer time periods.

Figure 9b gives the total accumulated time spent on one ex-

ecution of the initial step followed by a sequence of exe-
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cutions of the incremental step for IGERN with the repet-

itive construction of Voronoi cells. It is clear that as time

continues, IGERN saves a great amount of CPU time as its

incremental approach avoids the intensive computations of

Voronoi cells.

8 Conclusions

In this paper, we have presented a novel algorithm for

Incremental and General Evaluation of continuous Reverse

Nearest neighbor queries (IGERN, for short). IGERN is

general as it is a unified framework for both monochromatic

and bichromatic reverse nearest neighbors. In addition,

IGERN is incremental as it limits the attention to only a sin-

gle bounded region and a few set of moving objects rather

than focusing on the whole space. IGERN clearly enhances

over the state-of-the-art algorithms in continuous monchro-

matic reverse neighbor queries. Furthermore, IGERN is the

first algorithm that deals with continuous bichromatic re-

verse nearest neighbors. The correctness of both the mono-

chromatic and bichromatic IGERN is proved by showing

that IGERN is accurate, i.e., any object returned by IGERN

is a reverse nearest neighbor, and is complete, i.e., IGERN

returns all reverse nearest neighbors. Analytical compari-

son of IGERN with previous approaches for reverse nearest

neighbors is provided. Experimental evidence that supports

the analytical comparison is given where IGERN outper-

forms previous approaches in both the monochromatic and

bichromatic reverse nearest neighbors.
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