
MNTG: An Extensible Web-based Traffic Generator

Mohamed F. Mokbel1, Louai Alarabi2, Jie Bao3, Ahmed Eldawy4, Amr Magdy5,
Mohamed Sarwat6, Ethan Waytas7, Steven Yackel8

1,2,3,4,5,6,7University of Minnesota, Minneapolis, MN 55455, USA
8Microsoft

{mokbel1,louai2,baojie3,eldawy4,amr5,sarwat6}@cs.umn.edu
wayt0012@umn.edu7 spazard1@live.com8

Abstract. Road network traffic datasets have attracted significant attention in the
past decade. For instance, in spatio-temporal databases area, researchers harness
road network traffic data to evaluate and validate their research. Collecting real
traffic datasets is tedious as it usually takes a significant amount of time and ef-
fort. Alternatively, many researchers opt to generate synthetic traffic data using
existing traffic generation tools, e.g., Brinkhoff and BerlinMOD. Unfortunately,
existing road network traffic generators require significant amount of time and
effort to install, configure, and run. Moreover, it is not trivial to generate traffic
data in arbitrary spatial regions using existing traffic generators. In this paper,
we propose Minnesota Traffic Generator (MNTG); an extensible web-based road
network traffic generator that overcomes the hurdles of using existing traffic gen-
erators. MNTG does not provide a new way to simulate traffic data. Instead, it
serves as a wrapper over existing traffic generators, makingthem easy to use,
configure, and run for any arbitrary spatial road region. To generate traffic data,
MNTG users just need to use its user-friendly web interface to specify an arbi-
trary spatial range on the map, select a traffic generator method, and submit the
traffic generation request to the server. MNTG dedicated server will receive and
process the submitted traffic generation request, and notify the user via email
when finished. MNTG users can then download their generated data and/or visu-
alize it on MNTG map interface. MNTG is extensible in two frontiers: (1) It can
be easily extended to support various traffic generators. Itis already shipped with
the two most common traffic generators, Brinkhoff and BerlinMOD, yet, it also
has the interface that can be used to add new traffic generators. (2) It can be easily
extended to support various road network sources. It is shipped with U.S. Tiger
files and Open Street Map, yet, it also has the interface that can be used to add
other sources. MNTG is launched as a web service for public use; a prototype can
be accessed viahttp : //mntg.cs.umn.edu.

1 Introduction

Road network traffic data consist of a set of spatial locations reported by a set of objects
moving over a road network. Traffic data have been already leveraged by researchers
in different areas, e.g., spatial-temporal databases, transportation, urban computing and
data mining. The process of extracting real traffic data requires installing and config-
uring many GPS-enabled devices and continuously monitoring the locations of such
devices, which is a cumbersome task. For instance, GeoLife project [1] took more than

four years to collect 17,621 trajectories dataset with the involvement of 182 volunteers
in Beijing. Alternatively, many researchers opt to generate synthetic road network traf-
fic data. As a consequence, several efforts have been dedicated to develop road network
traffic generators, e.g., Brinkhoff [2] and BerlinMOD [3].

Even though existing traffic generators are quite useful, nonetheless, most of them
suffer from the following: (1) It may take the user significant amount of effort to install
and configure the traffic generation tool. For example, in order to run BerlinMOD, the
user needs to first install a moving object database, i.e., SECONDO [4], and then get
familiar with the script commands used to install it. After the installation, users still need
to understand an extensive list of configuration parametersfor each traffic generator.
(2) It is not trivial to generate traffic data in arbitrary spatial regions using existing
traffic generators. For example, to be able to use Brinkhoff or BerlinMOD generators
for a different city than the default shipped one (Oldenburgand Berlin for Brinkhoff and
BerlinMOD generators, respectively), the user needs to first obtain the road network
information for the city of interest, which is a tedious taskby itself. For example, to get
the road network information for the city of Munich, a user may need to understand the
format of OpenStreetMap [5], and then write a program that extracts the road network
of Munich from OpenStreetMap. After obtaining the new road network data, the user
will then need to understand how to modify the obtained format to match the required
one by either Brinkhoff or BerlinMOD. Such set of tedious operations made it hard for
casual users to use these traffic generators for arbitrary spatial areas. As a testimony,
one can observe that almost all the literature that have usedthese generators for traffic
data have used it for their default cities.

In this paper, we propose Minnesota Traffic Generator (MNTG); an extensible web-
based road network traffic generator that overcomes the hurdles of using existing traffic
generators. MNTG is basically a wrapper around existing traffic generators, with the
mission of enabling an easy usage of all existing traffic generators, and hence help all
researchers worldwide in validating and benchmarking their research techniques against
various workloads of movings objects over real road networks.

MNTG has three main features that significantly help in achieving its goals:
(1) MNTG is a web service with an easy-to-use user-friendly map interface. Behind
the scenes, MNTG carries the burden of configuring and running existing traffic gen-
erators. Thus, MNTG users do not need to install or configure anything on their local
machines. This is in contrast to the traditional usage of Brinkhoff and BerlinMOD gen-
erators that require various installations as mentioned above. (2) MNTG can be used
for any arbitrary city or spatial area worldwide. Users can just navigate through the
map interface, and mark their area of interest with a rectangular area. Once the traffic
generation request is submitted, MNTG is responsible for extracting the road network
information for the requested area and generating the traffic on the extracted area using
one of the existing traffic generators. This is in contrast tothe traditional usage of exist-
ing traffic generators that is hard to be tailored for arbitrary cities. (3) MNTG users do
not need to worry about the processing time or computing resources, where MNTG has
its own dedicated server machine that (a) receives a traffic request from the user, (b) in-
ternally processes the request in a multi-core multi-threaded program, and (c) emails
the user back when the requested data is generated. The notifying email includes a link

to download the data as well as an option to visualize the generated data. This is in
contrast to the traditional usage of existing traffic generators that may take significant
portion of the user time and computing resources.

Minnesota Traffic Generator (MNTG) is extensible in two frontiers: (1) It can be
easily extended to support various traffic generators through few deterministic func-
tions. Currently, MNTG is shipped with the two most common traffic generators,
Brinkhoff and BerlinMOD, yet, it also has the interface thatcan be used to add new
traffic generators. As a proof of concept, we extend it with a random generator which
generates some kind of random walks over the road network. (2) It can be easily ex-
tended to support various road network sources. It is currently shipped with the support
for U.S. Tiger files [6] and OpenStreetMap [5], yet, it also has the interface that can be
used to add other sources for road network data.

MNTG is equipped with three main components, listed as follows: (1)Road Net-
work Converter: that extracts the road network for the area of interest fromeither US.
Tiger files or OpenStreetMap, and converts it to match the format of the underlying
traffic generator. (2)Traffic Processor: that schedules and executes the received traffic
generation requests. The traffic processor processes the incoming requests in parallel
using a multi-threading paradigm to increase the overall system throughput. Both the
road network converter and traffic processor provide an interface for the system users
to incorporate a newly developed traffic generator. To plug-in a newly developed traffic
generator, MNTG defines a set of abstract functions that users need to implement. The
implemented functions deal with converting/extracting the road network data, executing
the traffic generator, and preparing the generated traffic output. Once a traffic genera-
tor is plugged-in, users may leverage it to generate traffic data. (3)System Front-End:
which contains a web interface for users to submit traffic generation requests, an email
notifier to send messages or notifications to the user, and a set of tools for the user to
download and visualize the generated traffic data.

A preliminary version of MNTG is launched as a web service forpublic use; a
prototype can be accessed viahttp : //mntg.cs.umn.edu. The preliminary version
supports Brinkhoff, BerlinMOD and the random traffic generators on both U.S TIGER
files and OpenStreetMap data. The extensibility interface for adding more generators or
other road network sources is currently working internallyunder our support. Yet, these
functionalities will be released to public use in our next version. Since its launch last
month, MNTG has received more than 1000 traffic generation requests from researchers
world wide. All requests have been efficiently satisfied, andresults were sent back to the
requesting users. We envision that MNTG will be the de facto standard for generating
road network data for researchers in spatial and spatio-temporal databases worldwide.

The rest of this paper is organized as follows: Section 2 highlights related work. Sec-
tion 3 gives an overview of MNTG. Sections 4 and 5 describe thetwo main components
in the system back-end; (1) road network converter and (2) traffic models, respectively.
Section 6 provides the description of the system front-end with detailed usage guide.
Finally, Section 7 concludes the paper with pointers to future work.

Environment Generators
Free Movement Pfoser and Theodoridis [7], Oporto [8], GSDT [9], G-TERD [10]

Road Network
Brinkhoff [2] , BerlinMOD [3] , ST-ACTS [11] , GAMMA [12],

SUMO [13] , Micro Simulators [14]
Multi Environments MWGen [15]

Table 1.Existing Moving Objects Generators.

2 Related Work

Road network traffic data (i.e., moving objects data) have been widely used by
researchers to test and validate their techniques in various spatio-temporal data man-
agement problems. This includes objects tracking [16], predictive queries [17], range
queries [18],kNN queries [19], continuous queries [20], data uncertainty[21], and lo-
cation privacy [22]. As a consequence, several efforts havefocused on creating standard
benchmarks for evaluating research on moving objects data [3, 23–27]. As part of cre-
ating such benchmarks, generating synthetic moving objects data gained considerable
attention in the literature.

Table 1 gives a summary of existing moving objects data generators. Based on the
spatial environment where the objects move on, existing moving objects data generators
can be classified into the following three main categories:

1. Free movement[7–10]. This category assumes that objects can move freely in a
two-dimensional Euclidean space. The GSTD generator [9] generates data for ei-
ther moving points or rectangular regions, where it allows its users to control the
lifetime of each moving object. The GSTD generator is later extended to incorpo-
rate real-life behaviors like group and obstructed movements [7]. G-TERD [10] has
introduced new features to traffic generators, where users can generate arbitrary-
shaped objects with tuning parameters that control object speed, color, and rotation
over time. Unlike all other moving objects generators, Oporto [8] is particularly
concerned with generating the movement of ships, which depends on fishing sce-
narios where ships head to fish shoals and avoid storms.

2. Road networks [2, 3, 28, 11–13,29, 14]. This category is mainly concerned with
generating moving objects data in a road network environment. Constrained by
the predefined road network paths, they basically generate traffic data based on
real-life trip planning scenarios that simulate the human behavior. Brinkhoff [2],
SUMO [13] and micro simulators [14] depend on short-term observations, where
representative human behavior is observed for short discrete trips. On the other
hand, BerlinMOD [3] and ST-ACTS [11] rely on long-term observations where
human behavior is observed for several consecutive days.

3. Multi-Environments [15]. This category considers moving objects in multi-
environments, e.g., Indoor→ walk → Bus→ walk. MWGen [15] surpassed the
typical functionality of generating data only for a single environment and extends
it to support multiple environments, i.e., indoors and outdoors, at the same time.

Traffic Processor

US Tiger Files

Traffic Data Users

Traffic Results

Email NotifierWeb Interface

Download/

Visualization

Tools

Traffic Requests

S
y
s
te
m

F
ro
n
te
n
d

S
y
s
te
m

B
a
c
k
e
n
d

Traffic generation request Download/visualize

traffic results

Status Notification

Status Notification

Results

BerlinMOD

Brinkhoff

New Generator

Road Network

Converter

OpenStreetMapsNew Data Source

Traffic Generator

Developers

Road Network Data Sources

Random

Fig. 1. MNTG System Overview.

GMOBench simulates a scenario like an employee moving in herwork building,
then walks to the parking lot to drive her car all the way to home, then walks again
to enter home and move indoors.

Minnesota Traffic Generator (MNTG) distinguishes itself from all the work men-
tioned above as it does not provide yet another technique fortraffic data generation.
Instead, it is an extensible wrapper built around any of the existing traffic generators
in the second category mentioned above (road network movement). As an extensible
easy-to-use wrapper, MNTG enables a practical use of all road network traffic genera-
tors developed over the last two decades. Due to its simplicity, MNTG is expected to
give a boost to existing traffic generators by gaining wider user community.

3 System Overview

Figure 1 gives an overview of the MNTG system architecture. Auser interacts with
MNTG through its system front-end that includes three main components: (1)Web In-
terface, which allows users to submit traffic generation requests byselecting a geo-
graphical area on the map and setting the corresponding parameters in a very intuitive
way, (2)Email Notifier, which retrieves the status updates from the back-end and keeps
users posted on their traffic generation request progress, and (3)Download and Visu-
alization tools, which allow users to download their generated traffic data as a text file
and/or visualize the generated traffic data on the map. The details of the system front-
end, with its three components, will be discussed in Section6.

Internally, the system back-end of MNTG processes incomingtraffic generation
requests and generates traffic data for the system users. Thesystem back-end consists
of the following two main components:

1. Road Network Converter, which is responsible for extracting the road network data
from the traffic generation request. It receives a rectangular spatial area with two
corner coordinates, each represented as a<latitude, longitude>. Then, theroad
network converterexploits its underlying road network data source, US Tiger files
or OpenStreetMaps, to extract the information of the selected area, and convert it
into an appropriate format understood by the requested traffic generator. Theroad
network converteris extensible to support other road network data sources beyond
its default ones, US tiger files and OpenStreetMaps. Detailsof the road network
converterwill be discussed in Section 4.

2. Traffic Processor, which takes the road network data from theroad network con-
verter and feed it to the requested traffic generator, which is currently either
Brinkhoff or BerlinMOD. The traffic processor is implemented in a multi-threading
paradigm to: (a) allow multiple requests to be served concurrently, and (b) avoid the
starving of small traffic generation requests waiting for large requests to finish. The
traffic processoris highly extensible as it is equipped with modules that allow the
traffic model developers to easily plug-in a new traffic generator. Details of the
traffic processorwill be discussed in Section 5.

4 Road Network Converter

Despite the abundance of road network data sources, such as US Tiger files and Open-
StreetMap, none of them provides an intuitive way to extractroad network paths, i.e.,
nodes and edges, for an arbitrary geographical area. MNTG, on the other hand, needs
to generate road network traffic data for any geographical area selected by the user. To
achieve that, MNTG employs aroad network converterthat is responsible for extracting
the road network data for each incoming traffic generation request. Moreover, The road
network converter is designed to support a wide variety of road network data sources.

In this section, we first discuss the main idea behind the roadnetwork converter.
Then, we provide two detailed case studies featuring two road network data sources,
which are currently implemented in MNTG: US Tiger Files and OpenStreetMap. Fi-
nally, we discuss the extensibility of the road network converter to support new road
network data sources.

4.1 Main Idea

The road network converter is responsible for extracting road network nodes and edges
from different sources and transforming the extracted datainto a standard format that
can be utilized by different traffic generators. The functionality of the road network con-
verter doesnotdepend on the underlying traffic model (e.g., Brinkhoff or BerlinMOD).
Instead, it heavily depends on the underlying data source (e.g., US Tiger files or Open-
StreetMap). To achieve its goals, the road network converter performs the following
two steps for each traffic generation request:

1. Step 1. Extracting Road Network.The input to this step is :(a) a rectangular spa-
tial area, defined by two corner<latitude, longitude> coordinates, and (b) the
road network data source (e.g., US Tiger files or OpenStreetMap). The output of
this step is the road network information of the selected area, based on the se-
lected road network data source. This is done through an abstract function, called
ExtractRoadNetwork, that exploits the underlying road network data source
to: (a) prune all information that are outside the selected rectangular spatial area,
and (b) prune the non road network information from the selected rectangular area.
We do so because each road network data source provides data in different formats;
for example, US Tiger Files are stored in a binary format withextra information
about zip codes, rivers, demographics, etc, while OpenStreetMap stores data in an
XML format with extra information about buildings, parks, traffic lights, etc.

2. Step 2. Preparing Standard Output.The input to this step is: (a) The road net-
work information of the selected rectangular spatial area,i.e., the output of the
ExtractRoadNetwork abstract function, and (b) the road network data source.
The output of this step is two standard text road network datafiles: node.txt
and edge.txt, which contain the final set of nodes and edges in the se-
lected spatial area, respectively. This is done through an abstract function, called
PrepareStandardOutput, that is aware of the data format of the underlying
data source and converts it to our standard output format.

We opt to transform the road network information into a standard text format, to
make it portable to various traffic generators. Each traffic generator uses its own dif-
ferent input file format and perhaps different spatial coordinate system. For example,
Brinkhoff generator uses binary files to store nodes and edges, whereas BerlinMOD
expects one text file with two bracketed locations to represent a road segment. More-
over, Brinkhoff generator uses its own spatial coordinatessystem, where thelatitude
andlongitudeof a location are the offsets instead of absolute values.

An example of the standard format of our generatednode.txt file is as follows:

Node_ID Lat Lng
54956254019183 44.85923581362268 -92.989281234375
19567871005131 45.032414105220745 -93.2028993984375
27380416518383 44.99418225712112 -93.4431044765625

Node ID is a unique identifier for the node on the road networks, whereasLat and
Lng are the latitude and longitude coordinates that represent the geographical location
of the node, respectively.

Similarly, an example of our generatededge.txt file is as follows:

Edge_ID Node_1 Node_2 Tags
0 33352568523324 33481417542144 highway
1 35667555893384 38510824242033 oneway
2 34881576878577 35839354585144

Edge ID is a unique identifier for the edge on the road networks, whereasNode 1
andNode 2 are node IDs contained in thenode.txt file. It means that the two nodes
(Node 1 andNode 2) are connected by the edgeEdge ID. Tags attach extra infor-
mation to road edges which can be used by some generators.

4.2 Case Study 1: US Tiger File

US Topologically Integrated Geographic Encoding and Referencing (Tiger) Files [6]
are published by US census bureau on a yearly basis to providethe most recent in-
formation about US geographical data, which include city boundaries, road networks,
address information, water features, and many more. In MNTG, we focus on extracting
the road network information from theRoad directory of Tiger files.

A very unique feature of US Tiger Files is that the files are partitioned and orga-
nized based on US counties. In other words, all roads in a county are packed in a com-
pressed file with a unique file identifier, e.g.,tl_2010_01001_roads.zip, where
tl means tiger line,2010 indicates the publishing year of the data,01001 is a unique
identifier for the county (in this case isAutauga, Alabama), androads represents the
type of data.

The tricky part of the road network conversion with US tiger files is that a user
may select a geographical area that covers multiple counties. This means that the road
network converter needs to access road network data that spans multiple files. Hence,
the most important step here is to find the corresponding counties covered by the
user-selected area. To this end, we extract a minimum bounding box (UpperLat,
UpperLng and LowerLat, LowerLng) for each US county. Then, we create a
database table to store the bounding box corresponding to each county ID.

When a traffic generation request is received, we retrieve the road network data from
US Tiger Files by first selecting all counties that overlap with the spatial region selected
by the user. Then, we load the road network files for all overlapped counties and filter
out the nodes and edges based on the user specified area. Finally, we write the qualified
nodes and edges in the standard output format.

4.3 Case Study 2: OpenStreetMap

OpenStreetMap is a project that aims at digitizing geographical data for the whole world
by providing geographical data that is free to use, distribute, and manipulate. Since it
is maintained by volunteers, data in OpenStreetMap is updated frequently, whereas the
data quality may not be as good as the data extracted from other commercial/official
data sources. OpenStreetMap maintains a very large file, i.e., Planet.osm, to record
all spatial objects in the whole world, e.g., road networks,buildings, rivers, etc. Essen-
tially, planet.osm is one large XML (Extensible Markup Language) file that consists
of the following four primitive data types:

– Node, that represents a spatial point by its latitude and longitude coordinates.
– Way, that consists of a sequence ofnodeswhich, connected together, form a line or

a polygon.
– Relation, that specifies the relation betweenwaysand nodes. For example, two

waysare connected together.
– Tags, that provides description for any of the other data types,node, way, or rela-

tion, using a key-value pair.

We carry out the extraction of OSM data in three phases, namely, parsing, index-
ing andqueryingwhere the first two phases are offline and the third phase is online.

In the parsing phase, the XMLplanet.osm file is processed to extract node and
edge files for the whole world in the format discussed in Section 4.1. All nodes are ex-
tracted and stored in onenode file. Ways are filtered on the fly based on the associated
tags and only those associated to the road network are extracted. Each way is stored
as a sequence of edges in oneedge file. The indexing phase preprocesses thenode
andedge files (56GB and 98GB, respectively) to speedup range queriesthat selects
a particular area. We initially tried to load them in a PostGIS database with an R-tree
index but the loading process did not finish in a reasonable time (we terminated the
process when it took more than a week). As an alternative solution, we used Spatial-
Hadoop [30], a MapReduce framework for spatial data, to build an R-tree index in a
cluster of 20 machines which took around four hours. The firststep is to join the node
and edge files to project coordinates of both ends of an edge, and then build an index
over the edges based on their minimal bounding rectangles (MBRs). Once the R-tree
index is constructed, it is extracted out of the cluster in the format of amasteranddata
files where the master file stores the region occupied by each data file as an MBR while
the data files store the data records. Thenode-edge joined file ended in 10,000 data
files with an average file size of 12MB. The final phase is the querying phase in which
range queries are processed on the R-tree to extract node andedge files in a particular
area based on a user traffic request. First, the master file is examined to select the data
files that need to be processed. Next, these data files are processed to generate the node
and edge files that are then processed by the selected generator.

4.4 Extensibility with Other Road Network data Sources

As was pointed out in Figure 1, MNTG is extensible to support new road network
data sources. Thanks to the modular design of theroad network converter, extending
MNTG with another road network data source is as simple as providing the contents
of two abstract functions. Assume a service provider that has a new road network
data source, termedMyRoadNetwork. To include this data into MNTG, we provide
a template java file, where the service provider needs to fill the contents of: (a) the
ExtractRoadNetwork abstract function which will basically select the informa-
tion of the selected area formMyRoadNetwork, as discussed in Section 4.1, and (b) the
PrepareStandardOutput abstract function that outputs the nodes and edges in-
formation of the selected area in the standard output format, as discussed in Section 4.1.

It is important to note that filling the contents of the abstract functions in the tem-
plate does not really have to be by the service provider of thenew data source. Instead,
third parties or volunteers can provide this functionality. In other words, crowd sourcing
can play a major role here in extending MNTG to support various road network data
sources. We have started this by providing the abstraction of US Tiger files and Open-
StreetMap, as described above in Sections 4.2 and 4.3, respectively. Yet, we call for
the efforts of research community and volunteers to supportmore data sources within
MNTG.

Traffic Model

BerlinMOD

Abstract Class
1.RoadNetworkConvert

2.TrafficGeneration

3 TrafficResultConvert

Brinkhoff Random New Model

Fig. 2.Traffic Model Class.

5 Traffic Processor

TheTraffic Processorin MNTG is responsible for generating the requested traffic data
based on the selected traffic generator. It takes the extracted road network from theroad
network convertercomponent (Section 4) and feeds it to the selected traffic generator.
The challenge here is on how to accommodate the various inputformats, parameters,
and running environments for different traffic generators.To this end, theTraffic Pro-
cessorcomponent in MNTG provides an abstract way to accommodate various traffic
generators. It currently includes two famous ones, Brinkhoff and BerlinMOD, however,
its abstract design makes it highly extensible to support more traffic generators. In this
section, we first discuss the main idea behind the traffic processor. Then, we provide
three detailed case studies featuring Brinkhoff, BerlinMOD and random walk traffic
generators. Finally, we discuss the extensibility of the traffic processor to support other
traffic generators.

5.1 Main Idea

To generate the traffic data based on a particular traffic generator, MNTG basically
aims to run the traffic generator as is. However, this is hindered by the fact that differ-
ent traffic generators: (a) employ different execution methods and (b) require different
configuration files and/or parameters. For example, Brinkhoff model is executed with
a java jar file, while BerlinMOD runs with a script file. As the purpose of MNTG is to
enclose various traffic generators, it builds a wrapper around each traffic generator to
make them all look the same when it comes to receiving a trafficgeneration request and
producing the final result.

The main idea is to create an abstract classTraffic Model in MNTG, as de-
picted in Figure 2. Then, all definitions and functions for each traffic generator has to
be incorporated inside this abstract class. In general, there are four key data structures
that should be inherited by all traffic generators in MNTG:

1. Traffic Request ID, as the traffic request identifier, which is automatically generated
for each submitted request. It is used to link the input/output traffic data to the

corresponding traffic data requester and to send the traffic result as well as the
status notifications to the submitting user.

2. Traffic Model Name, which is another identifier to indicate the type of the selected
traffic generators, e.g., Brinkhoff or BerlinMOD.

3. Traffic Generation Area, which is the user selected rectangular area to generate
traffic data in. The area is represented by two corner points of the form<latitude,
longitude>.

4. Traffic Generation Parameters, which includes the parameters (e.g., number of
moving objects and simulation time), specified by the users,which will be used
for the traffic generation. The parameters may be specified differently for different
traffic generators.

Additionally, there are three main abstract functions thatneed to be implemented
for each traffic generator to be included in MNTG:

1. RoadNetworkConvert: this function converts the standard road network for-
mat received from the Road Network Converter (Section 4) to the specific format
used by the traffic generator.

2. TrafficGeneration: this function produces the traffic data based on the vari-
ous parameters specified by the user request. MNTG runs the traffic generator with
its own scripts or commands.

3. TrafficResultConvert: this function converts the output of the traffic gen-
eration process into a standard simple output format. The main reason behind this
function is that different traffic generators produce different formats of traffic data,
while users may want to use the same program to analyze them.

An example of the standard output format of the traffic processor is as follows:

OID TS Type Lat Lng
0 0 newpoint 44.986362410452 -93.2982044219971
1 0 newpoint 44.998948892253 -93.1812858581543
2 0 newpoint 44.966607085432 -93.2727378845215
0 1 move 45.031348772862 -93.2991374040413
1 1 move 44.953949943361 -93.3676484298706

whereOID is a unique identifier for the moving object.Lat andLng are latitude and
longitude coordinates that represent the spatial locationof the object.TS represents the
time unit at which objectOID was at (Lat,Lng) spatial location.Type determines
whether the generated point is a new object or an existing object that has just moved to
a new location.

5.2 Case Study 1: Brinkhoff Model

Brinkhoff traffic generator is one of most widely used trafficgenerators [2] (cited 650+
per Google Scholar). The general idea behind Brinkhoff generator is to simulate the ob-
ject movements from two random locations using the shortestpath. To realize Brinkhoff

generator inside MNTG, we have implemented the three abstract functions (introduced
in Section 5.1), as follows:

1. RoadNetworkConvert. In this function, we convert the output of the
Road Network Converterinto two binary files based on the descriptions in
Brinkhoff documentation1, and rename them asrequest_ID.node and
request_ID.edge.

2. TrafficGeneration. In this function, we prepare Brinkhoff configuration file,
i.e.,property.txt, where we update the corresponding path for the input files
(the two generated binary road network files) and the output path. Then, we assem-
ble the command using the parameters specified by the user in this request. Finally,
we make the following external call:

java -classpath generator.jar generator2.DefaultDataGenerator RequestID

where the only modification for the original generator is that it now takes the
RequestID, and produces the traffic result accordingly.

3. TrafficResultConvert. In this function, we convert the traffic data pro-
duced by Brinkhoff generator into our standard output format. An example of the
Brinkhoff output is as follows:

Type OID Seq Class TS X Y Speed Next_X Next_Y
newpoint 0 1 0 0 14839.0 10262.0 1093.0 14782 10765
newpoint 1 1 2 0 26319.0 1430.0 922.9 26317 1260
newpoint 2 1 0 0 11443.0 10983.0 1093.0 11431 15703

whereType determines whether the point is a new object or an existing object.
OID is a unique identifier for the moving object.Seq is the sequence number for
the moving object, andClass determines the type of the moving object.TS rep-
resents the time unit during the simulation time.X andY show the location of the
object, as Brinkhoff employs a different coordinating system that uses the offsets to
represent the location.Speed is the current moving speed of the object.Next X
andNext Y are the locations for the node in the road networks, where themoving
object will pass for the next movement.
As a result, we write a program to: (1) extract only theOID, Type, TS from the
original output, and (2) convert theX andY to be the latitude and longitude coor-
dinates. After that, MNTG is able to generate traffic with anyroad networks using
Brinkhoff model.

5.3 Case Study 2: BerlinMOD

BerlinMOD is another very popular traffic generator [3], where it simulates human
movements during the weekdays and weekends. Users can specify their work and home
areas in the road networks, then the generator simulates theusers movements based on
two rules: (1) during the weekdays, a user leaves Home in the morning (at 8 a.m.+T1),
drives to Work, stays there until 4 p.m.+T2 in the afternoon, and then returns back

1 http://iapg.jade-hs.de/personen/brinkhoff/generator/FormatNetworkFiles.pdf

Home, (2) during the weekends, a user has an 0.4 probability to do an additional trip
which may have 1-3 intermediate stops and ends at home.

To run the BerlinMOD traffic generator, a user would need to set up a SECONDO
database [4], and uses a set of script instructions to query it. To realize BerlinMOD
generator inside MNTG, we have implemented the three abstract functions (introduced
in Section 5.1), as follows:

1. RoadNetworkConvert. In this function, we read the standard road network
files and transform it to the format used in BerlinMOD. Ultimately, we produce a
data file namedstreet.data with the following information:

(OBJECT streets ()
(rel (tuple ((Vmax real)(geoData line))))

((50.0(
(-93.276029 45.035464 -93.275936 45.035877)
(-93.275936 45.035877 -93.275764 45.037752)

....

As a result, BerlinMOD requires us to represent the road segments with a pair of
locations bounded by a set of brackets.

2. TrafficGeneration. In this function, we prepare the script
based on the generation parameters specified by the user,
i.e., BerlinMOD_DataGenerator_RequestID.SEC, to query the un-
derlying SECONDO database. In MNTG, we prepare a generic script for
BerlinMOD and replace its parameters based on the user’s request. Then, we run
the following command line to execute the BerlinMOD generator:
SecondoTTYNT -i BerlinMOD_DataGenerator_RequestID.SEC

3. TrafficResultConvert. In this function, we build a program that converts
the traffic data produced by BerlinMOD into a standard format. An example of the
traffic data generated by BerlinMOD is as follows:

Mid Tid Tstart Tend Xstart Ystart Xend Yend
1 2 2007-05-26 10:34:40 10:34:42 -93.1767 45.0449 -93.1767 45.0448
1 2 2007-05-26 10:34:42 10:34:44 -93.1767 45.0448 -93.1766 45.0446
1 2 2007-05-26 10:34:44 10:34:46 -93.1766 45.0446 -93.1765 45.0444

whereMid is the unique identifer of the moving object,Tid is the trip identifer,
Tstart andTend represent the start and end timestamps for the record, while
Xstart, Ystart, Xend, andYend are the corresponding locations when the
object starts and ends during that time period.
As a result, we write a program to: (1) extract only theMid, Tid, Tstart from
the original output to identify the moving objects, and (2) convert theXstart and
Ystart to be the latitude and longitude. Then, MNTG is able to generate traffic
with any road networks using BerlinMOD.

5.4 Cast Study 3: Random Generator

As a proof of the concept of generation model extensibility,we implement a random
generator that generates random walks over the road network. The simplicity of the

model used in this generator allows it to handle requests with large areas and hundreds
of thousands of objects in a reasonable time. In addition to the road map of the selected
area, the random generator takes as input two user parameters, number of moving ob-
jects and total simulation time. The generator starts by assigning an initial position for
each object by selecting a random node in the road network. Ateach time step, each
object advances one step by selecting a random edge from the edges adjacent to current
node. To avoid going back and forth between two nodes, the last visited node is stored
and is removed from possible choices of next nodes. If an object cannot find a possible
next node (i.e., the only next node is the last visited node) or if the next node falls off the
grid, the object is removed from the map and a new object is placed in a new random
position. This simulates the event of a vehicle ending its trip and a new vehicle starting
a new trip. This also ensures that the total number of objectsin the map is fixed at the
user defined parameter. Although this generation model doesnot accurately simulate
real life, it is very useful for generating huge traffic data is a very short time which
allows end users to test the scalability of their systems.

5.5 Extensibility with Other Traffic Generators

As was pointed out in Figure 1, MNTG is extensible to support various traffic gen-
erators. Extending MNTG with another traffic generators is as simple as provid-
ing the contents of the three abstract functions, defined in Section 5.1. Assume
that a traffic generator developer has invented a new traffic generator, termedRan-
domGenerator. To include theRandomGeneratorinto MNTG, we provide a tem-
plate java file, where the traffic generator developer needs to fill the contents of
the three abstract functions:RoadNetworkConvert,TrafficGeneration, and
TrafficResultConvert, as described in Section 5.1.

Similar to extending MNTG for new data sources, filling the contents of the abstract
functions of a new traffic generator may be done by third parties or volunteers. Again,
crowd sourcing can play a major role here in extending MNTG tosupport new traffic
generators. We envision that MNTG will act as a vehicle that gives existing and forth-
coming traffic generators a boost to gain wide users community. Thus, it is to the benefit
of the traffic generator developers and to the research community in large to incorporate
new data generation tools within MNTG.

6 System Front-End

The system front-end provides a set of tools for users to generate and visualize their
requested traffic data. As MNTG is deployed as a web service, the system front-end
represents a web interface that users can access over the internet. The web interface is
designed for simplicity where users may generate, download, and visualize traffic data
with few interactive, rather intuitive, steps.

The system front-end consists of three main modules: (1)Web interface, which
allows users to easily interact with MNTG in terms of submitting traffic generation re-
quests (Section 6.1), (2)Email Notifier, which acknowledges the receipt of the traffic

Traffic Generation

Region
Traffic Generation

Parameters

Fig. 3. MNTG Web GUI: Traffic Generation

request as well as notifies the user back when the request is finished with links to down-
load and visualize the generated data (Section 6.2), and (3)Download & Visualization
tools, which allows the user to download its traffic data in a plain text format and/or
visualize the generated data in an OpenLayers map interface(Section 6.3).

6.1 Web interface

Figure 3 depicts MNTG web interface. To generate road network traffic data, a user
would perform the following four easy steps:

1. Either drag/zoom the map or write an address in the search field to get the sur-
roundings of the geographical area of interest.

2. Draw a rectangle around the area that you want to generate traffic within. This is
done by two left mouse clicks for rectangle corners.

3. From the drop down menu, select the traffic generator that you want to use as either
Brinkhoffor BerlinMOD traffic generators.

4. Click on theGeneratebutton, and enter the traffic simulation parameters.

6.2 Email Notifier

MNTG may take a while to process a traffic generation request for two main reasons:
(1) Depending on the size of the submitted traffic generationrequest (e.g., large num-
ber of moving objects or large simulation time), the underlying traffic generator (e.g.,
Brinkhoff or BerlinMOD) may spend significant time in simulating the requested traffic
parameters, (2) Even though MNTG employs a multi-threadingparadigm where sev-
eral traffic requests can be processed concurrently, the system may be overloaded when
the number of concurrent requests is more than the number of available threads. In that

Fig. 4. MNTG Traffic Visualization

case, MNTG employs a waiting queue, where incoming requestshave to be enqueued
waiting for a system thread to be available.

To this end, MNTGemail notifierhas two functionalities: (1) when the user submits
a traffic generation request, the email notifier sends an email back to the user acknowl-
edging the receipt of the request, and (2) Once MNTG finishes processing the user’s
traffic generation request, the email notifier sends a notification message that contains
two links; the first one is where the user can download the generated traffic data as a
text file while the second one is where the user can visualize the generated traffic data
on the map.

6.3 Download & Visualization Tools

As mentioned earlier, MNTG produces its output generated data in a uniform text for-
mat. Users may download the generated traffic data, including object ids, timestamps,
latitude, and longitude coordinates and/or visualize the generated traffic data on the map
using MNTG Map interface. MNTG stores the generated traffic data in the unified for-
mat mentioned above inside a MySQL database. Traffic visualization in OpenStreetMap
is performed using OpenLayers v2.12 API for displaying overlays in HTML. The data
is loaded via Javascript into the web page which then createsan overlay for each time
stamp of the traffic results. Overlays are an OpenLayers concept and can consist of
many different types of data, as shown in Figure 4. In this case, document fragments
are created for each object at a time stamp, which is then added to the overlay for that
time stamp. When the data is being animated, it simply consists of displaying the cor-
responding overlay to the time stamp and hiding the remaining overlays. Overlays are
used instead of traditional markers because of the speed at which they can be loaded in
comparison to the maps built-in markers.

7 Conclusion and Future Work

This paper has proposed Minnesota Traffic Generator (MNTG);an extensible web-
based road network traffic generator. MNTG is basically a wrapper that can be built
around existing traffic generators to make them easy-to-use, configure, and run for any
arbitrary spatial road region. To generate traffic data, MNTG users just need to use its
user-friendly web interface to specify an arbitrary spatial area on the map, select a traffic
generator method as one of the two most highly used traffic generators, Brinkhoff and
BerlinMOD, and submit the traffic generation request to the server. MNTG dedicated
server receives and processes the submitted request, and emails the user back once the
request is fulfilled. Users can then download their generated data and/or visualize it on
MNTG map interface. MNTG is composed of three main components: (1)Road Net-
work Converterthat extracts the road network information of the spatial area of interest
from either US Tiger files or OpenStreetMap, (2)Traffic Processorthat executes the
submitted request using the selected traffic generator on the extracted road network,
and (3)System Front-End, that includes the web interface, email notifier, and down-
load/visualasion tools for the traffic result. MNTG is highly extensible in two frontiers:
(1) It can be easily extended to support various traffic generators, beyond Brinkhoff and
BerlinMOD, by defining three abstract functions for each newgenerator, and (2) It can
be easily extended to support various road network sources,beyond US Tiger files and
OpenStreetMap, by defining two abstract functions for each new data source.

MNTG is still an undergoing project in data management lab atthe Univer-
sity of Minnesota. Its first release is already available fora public use athttp :

//mntg.cs.umn.edu, where it has received and fulfilled over 1000 traffic generation
requests since its release. Future work of MNTG includes: (a) supporting more traffic
generators beyond the two we have for now, Brinkhoff and BerlinMOD, and (b) sup-
porting more new data sources beyond US Tiger files and OpenStreetMap. A distin-
guishing feature in MNTG is that its future plans can be fulfilled via crowd sourcing,
where interested developers and researchers world wide canenrich the infrastructure of
MNTG by their contributions of new traffic generators and data sources. Plug-in func-
tions are available for that purpose. With the increase of volume for traffic generation
requests, we plan to move our server to a more powerful servermachine with GPU
cards to support large-volume traffic visualization.

References

1. Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma, “GeoLife2.0: A Location-Based Social Network-
ing Service,” inMDM, 2009, pp. 357–358.

2. T. Brinkhoff, “A Framework for Generating Network-basedMoving Objects,”GeoInformat-
ica, vol. 6, no. 2, pp. 153–180, 2002.

3. C. Düntgen, T. Behr, and R. H. Güting, “BerlinMOD: a Benchmark for Moving Object
Databases,”VLDB Journal, vol. 18, no. 6, pp. 1335–1368, 2009.

4. R. H. Güting, T. Behr, and C. Düntgen, “Secondo: A platform for moving objects database
research and for publishing and integrating research implementations,”IEEE Data Engineer-
ing Bulletin, vol. 33, no. 2, pp. 56–63, 2010.

5. “OpenStreetMaps,” http://www.openstreetmap.org/.

6. “US TIGER LINES,” http://www.census.gov/geo/maps-data/data/tiger-line.html.
7. D. Pfoser and Y. Theodoridis, “Generating Semantics-based Trajectories of Moving Ob-

jects,”Computers, Environment and Urban Systems, vol. 27, no. 3, pp. 243–263, 2003.
8. J.-M. Saglio and J. Moreira, “Oporto: A realistic scenario generator for moving objects,”

GeoInformatica, vol. 5, no. 1, pp. 71–93, 2001.
9. Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On the Generation of Spatiotemporal

Datasets,” inProceedings of the International Symposium on Advances in Spatial Databases,
SSD. Springer, 1999, pp. 147–164.

10. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos, “On the Generation of Time-
Evolving Regional Data,”GeoInformatica, vol. 6, no. 3, pp. 207–231, 2002.

11. G. Gidófalvi and T. B. Pedersen, “ST-ACTS: A Spatio-temporal Activity Simulator,” inGIS,
2006, pp. 155–162.

12. H. Hu and D. L. Lee, “GAMMA: A Framework for Moving Object Simulation,” in SSTD,
2005, pp. 37–54.

13. D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “SUMO (Simulation of Urban MObil-
ity): An Open-Source Traffic Simulation,” inProceedings of the 4th Middle East Symposium
on Simulation and Modelling, 2002, pp. 183–187.

14. “SMARTEST: Simulation Modelling Applied to Road Transport European Scheme Tests,”
http://www.its.leeds.ac.uk/projects/smartest/.

15. J. Xu and R. H. Güting, “MWGen: A Mini World Generator,” in MDM, 2012, pp. 258–267.
16. H.-P. Tsai, D.-N. Yang, and M.-S. Chen, “Mining Group Movement Patterns for Tracking

Moving Objects Efficiently,”IEEE TKDE, vol. 23, no. 2, pp. 266–281, 2011.
17. H. Jeung, Q. Liu, H. T. Shen, and X. Zhou, “A Hybrid Prediction Model for Moving Objects,”

in ICDE, 2008, pp. 70–79.
18. M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable Incremental Processing of Con-

tinuous Queries in Spatio-temporal Databases,” inSIGMOD, 2004, pp. 623–634.
19. W. Wu, W. Guo, and K.-L. Tan, “Distributed Processing of Moving K-Nearest-Neighbor

Query on Moving Objects,” inICDE, 2007, pp. 1116–1125.
20. M. F. Mokbel and W. G. Aref, “SOLE: Scalable On-line Execution of Continuous Queries

on Spatio-temporal Data Sreams,”VLDB Journal, vol. 17, no. 5, pp. 971–995, 2008.
21. B. S. E. Chung, W.-C. Lee, and A. L. P. Chen, “Processing Probabilistic Spatio-temporal

Range Queries Over Moving Objects with Uncertainty,” inEDBT, 2009, pp. 60–71.
22. H. Hu, J. Xu, and D. L. Lee, “PAM: An Efficient and Privacy-Aware Monitoring Framework

for Continuously Moving Objects,”IEEE TKDE, vol. 22, no. 3, pp. 404–419, 2010.
23. S. Chen, C. S. Jensen, and D. Lin, “A Benchmark for Evaluating Moving Object Indexes,”

VLDB Journal, vol. 1, no. 2, pp. 1574–1585, 2008.
24. A. H. F. Laender, K. A. V. Borges, J. C. P. Carvalho, C. B. Medeiros, A. S. da Silva, and

C. A. Davis, “Integrating Web Data and Geographic Knowledgeinto Spatial Databases,” in
Spatial Databases, 2005, pp. 23–47.

25. C. Shen, Y. Huang, and J. W. Powell, “The Design of a Benchmark for Geo-stream Manage-
ment Systems,” inGIS, 2011, pp. 409–412.

26. T. Tzouramanis, “Benchmarking and Data Generation in Moving Objects Databases,” in
Encyclopedia of Database Technologies and Applications, 2005, pp. 23–28.

27. J. Xu and R. H. Güting, “GMOBench: A Benchmark for Generic Moving Objects,” inGIS,
2012, pp. 410–413.

28. R. H. Güting, V. T. de Almeida, and Z. Ding, “Modeling andQuerying Moving Objects in
Networks,”VLDB Journal, vol. 15, no. 2, pp. 165–190, 2006.

29. M. Vazirgiannis and O. Wolfson, “A Spatiotemporal Modeland Language for Moving Ob-
jects on Road Networks,” inSSTD, 2001, pp. 20–35.

30. A. Eldawy and M. F. Mokbel, “A Demonstration of SpatialHadoop: An Efficient MapReduce
Framework for Spatial Data,” inVLDB, 2013.

