Flexible and Extensible Preference Evaluation in Database Systems

JUSTIN J. LEVANDOSKI, Microsoft Research
AHMED ELDAWY, University of Minnesota
MOHAMED F. MOKBEL, University of Minnesota
MOHAMED E. KHALEFA, Alexandria University, Egypt

Personalized database systems give users answers tailored to their personal preferences. While numer-
ous preference evaluation methods for databases have been proposed (e.g., skyline, top-k, k-dominance, k-
frequency), the implementation of these methods at the core of a database system is a double-edged sword.
Core implementation provides efficient query processing for arbitrary database queries, however this ap-
proach is not practical since each existing (and future) preference method requires implementation within
the database engine. To solve this problem, this paper introduces FlexPref, a framework for extensible pref-
erence evaluation in database systems. FlexPref, implemented in the query processor, aims to support a
wide-array of preference evaluation methods in a single extensible code base. Integration with FlexPref is
simple, involving the registration of only three functions that capture the essence of the preference method.
Once integrated, the preference method “lives” at the core of the database, enabling the efficient execution
of preference queries involving common database operations. This paper also provides a query optimization
framework for FlexPref, as well as a theoretical framework that defines the properties a preference method
must exhibit to be implemented in FlexPref. To demonstrate the extensibility of FlexPref, this paper also
provide case studies detailing the implementation of seven state-of-the-art preference evaluation methods
within FlexPref. We also experimentally study the strengths and weaknesses of an implementation of Flex-
Pref in PostgreSQL over a range of single-table and multi-table preference queries.

Categories and Subject Descriptors: H.2.4 [Database Management]|: Systems—query processing
General Terms: Algorithms, Design, Performance
Additional Key Words and Phrases: Preference query processing, extensibility

ACM Reference Format:

Justin J. Levandoski, Ahmed Eldawy, Mohamed F. Mokbel, Mohamed E. Khalefa, 2013. Flexible and Exten-
sible Preference Evaluation in Database Systems. ACM Trans. Datab. Syst. 0, 0, Article 0 (2013), 42 pages.
DOI:http:/dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Embedding preferences in or on-top of databases has helped realize non-trivial
applications, ranging from multi-criteria decision-making tools to personalized
databases [Koutrika and Ioannidis 2004]. Preference queries give users interesting an-

This is a preliminary release of an article accepted by ACM Transactions on Database Systems. The
definitive version is currently in production at ACM and, when released, will supersede this version.
Authors’” address: Justin Levandoski, Microsoft Research, Redmond, WA 98052; email:
justin.levandoski@microsoft.com. Ahmed Eldawy and Mohamed Mokbel, Department of Com-
puter Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
email: {eldawy,mokbel}@cs.umn.edu. Mohamed Khalefa, Alexandria University, Egypt; email:
khalefa@cs.umn.edu.

This research was supported in part by the National Science Foundation under Grants I1IS-0952977 and
11S-1218168.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 0362-5915/2013/-ARTO0 $15.00

DOI:http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:2 Justin Levandoski et al.

swers by evaluating their personal wishes according to a certain preference method.
In the literature, there exist a large number of preference evaluation methods, in-
cluding top-k [Chaudhuri and Gravano 1999], skylines [Borzsonyi et al. 2001], hybrid
multi-object methods [Balke and Giintzer 2004], k-dominance [Chan et al. 2006a], k-
frequency [Chan et al. 2006b], ranked skylines [Lee et al. 2009], k-representative dom-
inance [Lin et al. 2007], distance-based dominance [Tao et al. 2009], e-skylines [Xia
et al. 2008], and top-k dominance [Yiu and Mamoulis 2007]. In general, the point of
proposing new preference methods is to challenge the notion of “best” answers. Since
the concept of “best” is subjective, there is theoretically no limit to the number of new
preference methods that can be proposed. Given the large number of preference meth-
ods already in existence (with more on the way), a fundamental issue behind each
method is how it can handle arbitrary queries in a database management system
(DBMS) that may contain selection, aggregation, and/or join operations.

The most common approach for preference evaluation in database systems is the
on-top approach where the preference method is implemented as either a stand-alone
program or a user-defined function. This approach treats the DBMS as a “black box”,
where the preference evaluation method is completely decoupled from the database,
and hence not concerned with internal database operations (e.g., joins) necessary to
retrieve the data (e.g., see [Balke and Giintzer 2004; Chan et al. 2006a; 2006b; Lee
et al. 2009; Lin et al. 2007; Tao et al. 2009; Xia et al. 2008; Yiu and Mamoulis 2007]).
The main advantage of this approach is its simplicity as it only requires the imple-
mentation of the preference evaluation method in a separate code base outside the
core database engine. However, the efficiency of this approach is limited as it cannot
interact with database internal operations in most cases [Reinwald and Pirahesh 1998;
Reinwald et al. 1999]. Furthermore, preference evaluation methods may be created as-
suming that data exists in a specific format (e.g., non-standard index), unaware of how
data is physically stored or retrieved from the database.

A much more efficient approach for preference evaluation in database systems is
the built-in approach that tightly couples preference evaluation with the query pro-
cessor by creating customized database operations (e.g., selection, aggregation, and
join) for each preference method. The efficiency of this approach over the on-top ap-
proach is obvious from the extensive work of injecting ranking and top-k queries in-
side the database engine for selection queries [Carey and Kossmann 1997; Chaudhuri
and Gravano 1999], join queries [Ilyas et al. 2003], and sorted list access [Fagin et al.
2001; Ilyas et al. 2002]. However, it is not practical to develop and maintain a database
system that implements each existing (and future) preference method in this manner.
For instance, given the amount of effort needed to implement top-k operations in a
database system [Ilyas et al. 2008], it would be hard to replicate this effort for nu-
merous other preference methods. Supporting each distinct preference method in this
manner is simply infeasible.

In this paper, we present FlexPref; an extensible framework for preference evalua-
tion in database systems. FlexPref represents a centrist approach to preference imple-
mentation that combines the simplicity of the on-top approach with the efficiency of
the built-in approach. The simplicity of FlexPref comes from the fact that integrating
a new preference method involves the registration of only three functions that capture
the essence of the preference method. The efficiency of FlexPref comes from the fact
that once a preference method is integrated with the system, it “lives” at the core of
the database engine, enabling the efficient execution of preference queries involving
common database operations.

As depicted in Figure 1, FlexPref is implemented inside the PostgreSQL [Post-
greSQL] query processor, and is extensible to arbitrary preference methods. FlexPref

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:3

o o N

Query Processor

FlexPref

Skyline

MyPref
Function
Definitions

Fig. 1. FlexPref Architecture

consists of a set of generic relational operators that implement the query processing
steps common to many preference methods. The generic operators themselves do not
evaluate preference semantics; these semantics are injected into the FlexPref opera-
tors through the implementation of only three functions (outside of the database) that
are then registered with FlexPref. These functions are designed to: (a) specify rules for
when a tuple is “preferred” and (b) define rules for how items are added to a current
set of preferred objects. These functions simply define the semantics of a preference
method, not how to process the preference query.

The extensible approach used by FlexPref is quite powerful: it allows a generic set
of relational operators to take on the semantics of several different preference meth-
ods. In other words, FlexPref allows a database to efficiently evaluate several classes
of preference queries (e.g., top-k, skyline) using the same code base. Since adding a
preference method to FlexPref is quite easy (using the extensible functions), it leads
to much less engineering overhead than the built-in approach (creating new opera-
tors for each preference method). In fact, FlexPref requires orders of magnitude less
code. For example, implementing a simple single table skyline evaluation algorithm
from scratch in PostgreSQL takes an order of 2,000 lines of code, while with FlexPref
embedded in PostgreSQL, skyline implementation is on the order of 300 lines of code.

FlexPref results in efficient execution of preference methods inside the database en-
gine, similar to that of the built-in approach. The main idea of FlexPref is to provide
a set of generic, extensible operators (e.g., single-table access, join) capable of inte-
gration and optimization with existing relational operators in pipelined query plans.
Then, any preference method registered with FlexPref is seamlessly integrated with
the FlexPref framework, that is in turn coupled with the database query processor.
As depicted in Figure 1, it is important to note that only FlexPref touches the query
processor while each new preference method is “plugged into” the framework. FlexPref
raises two fundamental questions regarding the efficient execution of arbitrary pref-
erence queries: (1) Is FlexPref more efficient than the on-top approach? The answer is
yes; coupling database operators with general preference criteria implies that a query
processor can be optimized to perform early pruning by disregarding data that has no
chance of being in a preferred answer set. Such an optimization is not possible with the
on-top approach. (2) Is FlexPref more efficient than the built-in approach?. The answer,
invariably, is no. Implementing specialized database operations for a specific prefer-
ence method (e.g., top-k join) will always be more efficient than the generalized exten-
sible case of FlexPref. However, it is impractical to have specialized implementations
for each preference method. We equate this argument to previous research comparing
generalized indexes (e.g., GiST [Hellerstein et al. 1995]) to that of specialized indexes
(e.g., B-tree [Comer 1979], R-Tree [Guttman 1984]).

We demonstrate the functionality of FlexPref through three database operations,
namely, single table access (i.e, selection), joins, and sorted list access, that are designed

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:4 Justin Levandoski et al.

to handle arbitrary preference methods integrated in FlexPref. We provide query op-
timization properties for all generic FlexPref operators, focusing on cardinality esti-
mation, cost estimation, and equivalence and commutation rules for coupling FlexPref
with existing relational operators. Also, we provide a theoretical framework for Flex-
Pref that defines the properties a preference method needs to fulfill in order to be
supported by FlexPref. To showcase the flexibility of FlexPref, we provide case stud-
ies for integrating seven non-trivial, state-of-the-art preference methods within Flex-
Pref, namely, Skyline [Borzsonyi et al. 2001], Top-k [Chaudhuri and Gravano 1999],
Top-k dominating [Yiu and Mamoulis 2007], K-dominance [Chan et al. 2006a], K-
frequency [Chan et al. 2006b], e-dominance [Xia et al. 2008], and k-representative sky-
line [Lin et al. 2007].

FlexPref has the potential to provide further functionality beyond the operations
discussed in this paper, as it lays the groundwork for further non-trivial, extensi-
ble support for preference evaluation in databases, such as uncertain data processing
and indexing. The idea is that any new functionality is implemented only once by the
FlexPref framework, instead of re-implementing it for each preference method. We ex-
perimentally evaluate the strengths and weaknesses of FlexPref, implemented in the
query processing engine of PostgreSQL, through the implementation several prefer-
ence methods. We test our three main FlexPref operators in comparison to the on-top
and built-in approach. In addition, we also experimentally evaluate the benefits of the
FlexPref query optimization techniques.

The rest of this paper is organized as follows. Section 2 covers related work. Sec-
tion 3 describes the usage of FlexPref. The FlexPref generic functions are described
in Section 4. Section 5 covers preference evaluation in FlexPref through three main
database operations. Query optimization of FlexPref operators is covered in Section 6,
while Section 7 presents a theoretical framework for FlexPref by discussing supported
preference method properties. Seven implementation case studies for FlexPref are dis-
cussed in Section 8. Experimental evaluation of FlexPref is provided in Section 9 while
Section 10 concludes this paper.

2. RELATED WORK
2.1. Extensible Database Systems

Research in extensible relational database systems started more than two decades
ago [Batory and Mannino 1986; Carey and Haas 1990] spanning academic system pro-
totypes (e.g., EXODUS [Carey and DeWitt 1987; Carey et al. 1991], Postgres [Stone-
braker et al. 1987; Stonebraker and Rowe 1986], GENESIS [Batory et al. 1988]), and
commercial products (e.g., IBM Starburst [Lohman et al. 1991], Sybase [Olson et al.
1998], Oracle [Srinivasan et al. 2000]). Based on the extensible database components,
previous work can be categorized into: (1) Extensibility in abstract data types [Linne-
mann et al. 1988; Ong et al. 1984; Osborn and Heaven 1986; Stonebraker 1986] where
users can define new data types by specifying name, space allocation, and a set of func-
tions to operate on the new data types, (2) Extensibility in query processing and opti-
mization [Batory 1986; Graefe 1994; Graefe and DeWitt 1987; Haas et al. 1989; Kabra
and DeWitt 1999; Pirahesh et al. 1992; Waas and Hellerstein 2009] where the idea is
to use an extensible rule-based query optimizer to add user-defined rules, and (3) Ex-
tensibility in access methods [Hellerstein et al. 1995; Lynch and Stonebraker 1988;
Srinivasan et al. 2000] where the idea is to generalize the execution of several index
structures within one core implementation but allow extensible behavior based on the
indexed data type, e.g., data-specific node splitting and merging strategies. Compared
to this previous work, our end goal in creating FlexPref is different in two main re-
spects. (a) FlexPref focuses specifically on extending the database to handle different

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:5

preference methods, as opposed to focusing on generic extensibility. (b) FlexPref is a
set of generic database operators, as opposed to a generic extensible query processor,
built to abstract the common operations in preference query processing.

2.2. Preference Methods

Many methods have been proposed for evaluating user preferences over relational
data. The two methods receiving the most attention are skyline [Borzsonyi et al. 2001;
Chomicki et al. 2003; Kossmann et al. 2002] and top-k# [Chang and Hwang 2002;
Chaudhuri and Gravano 1999; Ilyas et al. 2003; Ilyas et al. 2004]. Other methods
have been proposed that evaluate preference queries in a manner different to skyline
and top-k, aiming to enhance the quality of the answer. Examples of these methods
include, but are not limited to, hybrid multi-objective methods [Balke and Giintzer
2004], k-dominance [Chan et al. 2006al], k-frequency [Chan et al. 2006b], ranked sky-
lines [Lee et al. 2009], k-representative dominance [Lin et al. 2007], distance-based
dominance [Tao et al. 2009], e-skylines [Xia et al. 2008], and top-k£ dominance [Yiu and
Mamoulis 2007]. In this paper, we do not propose a new preference method. Rather,
the goal of FlexPref is to provide a single generalized, extensible preference evalua-
tion framework that allows the integration of any of these preference methods inside
a database query processor.

2.3. Preference in Databases

Much work has gone into embedding the notion of preference in database systems
from both the modeling and implementation aspects. The modeling aspect is con-
cerned more with the theoretical foundation of preference expressions over relational
data [Agrawal and Wimmers 2000; Chomicki 2002; 2003; KieBling 2002; Koutrika and
Toannidis 2004; Lacroix and Lavency 1987]. In some cases, the model provides rules
that define how the model translates into traditional SQL queries. For example, query
personalization [Koutrika and Ioannidis 2004; 2005a; 2005b] models preferences us-
ing a relational graph, where preferred attributes and relations are given a degree of
interest score. Using this graph, SQL queries are injected with the top-k preferences
derived from the graph.

PreferenceSQL [KieBling 2002; Kieflling and Koéstler 2002; Kieflling et al. 2011] is an
extension to standard SQL supporting the best-matches only (BMO) query model. Pref-
erenceSQL supports a number of preference operators including Pareto, Prioritization,
Rank, and Dual, which can be combined to support both qualitative and quantitative
preferences in a single query. The system is implemented as a middleware layer for
easy integration with most database systems and supports query optimization (prefer-
ence algebraic transformations, cost-based selection) as well as high-level preferences
on spatial objects [Wenzel et al. 2012]. FlexPref supports a both qualitative and quanti-
tative preference methods, as well as a hybrid of both. For example, FlexPref supports
skyline (qualitative), top-k (quantitative), and top-k domination [Yiu and Mamoulis
2007] (hybrid). In PreferenceSQL terminology, the FlexPref operators support Pareto
(e.g., skyline) and Rank (e.g., top-k) operations, which is a subset of those supported
by PreferenceSQL since FlexPref is not closed under SV-semantics [KieBling 2002].
FlexPref differs from PreferenceSQL in that its purpose is to explore novel systems
problems behind embedding generic and extensible preference operators inside a the
core database engine.

Other work [Arvanitis and Koutrika 2012] explores embedding preferences in a re-
lational database by extending a relation with score and confidence attributes (called
p-relations). This framework defines a query processing operator that evaluates pref-
erences according to the p-relational model, and also extends traditional operators (se-
lect, project) with p-relation semantics. Other work has explored modeling contextual

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:6 Justin Levandoski et al.

preferences, where the objective is to evaluate preferences that change based on a
user’s situation [Agrawal et al. 2006; Stefanidis and Pitoura 2008; Stefanidis et al.
2007].

2.4. Preference Method Implementation

In terms of preference method implementation, many proposed algorithms are not
designed to integrate with ad-hoc relational queries involving joins, aggregation,
etc [Balke and Giintzer 2004; Chan et al. 2006a; 2006b; Lee et al. 2009; Lin et al.
2007; Tao et al. 2009; Xia et al. 2008; Yiu and Mamoulis 2007]. They are implemented
“outside-the-box”: completely outside the DBMS or as user-defined functions that sit
on-top of a query plan. The closest work to ours investigates integrating preference
evaluation algorithms within a database query processor. To this extent, there has
been work integrating top-k preferences with selection [Chaudhuri and Gravano 1999]
and join queries [Ilyas et al. 2003], and integrating skyline with join queries [Jin et al.
2007; Jin et al. 2010; Raghavan and Rundensteiner 2010] where the state of the art
approach supports progressive results and early termination [Vlachou et al. 2011].
Conversely, we do not study custom implementations. FlexPref aims to support any
preference method inside the database engine in a general, extensible manner. Flex-
Pref is completely novel in this regard.

2.5. Extensible Preference Evaluation in Databases

Previous work [Levandoski et al. 2010b; 2010a] explored the creation of an extensible
preference query processing framework for database systems. However, this work pro-
vided no theoretical underpinnings for the extensible framework. Furthermore, the
work did not explore query optimization properties necessary for implementation in
a database system. This paper expands on this previous work in the following di-
mensions: (1) We introduce a query optimization framework for extensible preference
query processing (Section 6). Specifically, we discuss cardinality estimation for generic
preference operators, cost estimation for each generic operator, and finally introduce
equivalence rules for commuting generic preference operators with the select operator,
distributing over joins, and commuting with projection. (2) We introduce a framework
that defines the theoretical properties that a preference method must fulfill to be sup-
ported by a generic and extensible preference query processing framework (Section 7).
(38) We offer case studies discussing the implementation of two state-of-the-art pref-
erence methods (e-dominance [Xia et al. 2008] and and k-representative skyline [Lin
et al. 2007]) that were not present in previous work. (4) We expand upon existing
case studies introduced in previous work by discussing how each method supports the
new query optimization properties introduced in Section 6. (5) We provide new experi-
mental evaluation (Section 9.4) that studies the performance effects of the new query
optimization framework.

3. USING FLEXPREF

In this section, we show how to: (a) register a new preference method in FlexPref, and
(b) how to query a database system, e.g., PostgreSQL, that is equipped with FlexPref.

3.1. Adding A Preference Method to FlexPref

Adding a preference evaluation method to FlexPref requires the implementation of
three functions outside the database engine. The details of these functions are cov-
ered in Section 4. Once implemented, the preference method is registered using a
DefinePreference command, formally:

DefinePreference [Name] WITH [Filel

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:7

The name argument is the name of the preference method, while the file argument
specifies the file containing the function implementations. In our system, these func-
tions are implemented in C for easy compilation into the PostgreSQL engine (imple-
mented in C). DefinePreference compiles the preference code into our framework. This
process is depicted in Figure 1 for a preference method “MyPref”.

3.2. Querying FlexPref

Once a preference method is registered with FlexPref, it can be used in database
queries immediately. FlexPref requires the extension of the SQL syntax in order to
select the appropriate preference methods and specify their objectives. In this section,
we will first describe the general skeleton of SQL queries in FlexPref, and then de-
scribe the specific arguments for our seven case studies of preference methods.

3.2.1. Query Skeleton. FlexPref adds a Preferring and Using clause to conventional SQL
in order to issue preference queries. A typical query in FlexPref is:

Select [Select Clausel

From [Tables]

Where [Where Clause]

Preferring [Preference Attributes]

Using [method] With [Parameter]

Objectives [Objectivel
Here, the method (with objectives) specified in the Using clause is responsible for se-
lecting the preference evaluation method to be applied over the attributes given in
the Preferring clause. Since FlexPref is implemented within the Postgres database, it
supports the SQL 2008 standard, including Postgres-specific features such as extensi-
ble functions and GIS.

By default, the FlexPref'is the topmost operator in a preference query. However, Sec-
tion 6 discusses relational optimization of the FlexPref framework. Such optimization
is non-trivial, since the optimization depend on the semantics of the preference method
executing within FlexPref. In this paper, we study and experiment with FlexPref in-
tegrated alongside the select, project, and join operations. Integrating FlexPref with
aggregation and group-by operations is a property of the specific preference method
implemented within FlexPref, and is a topic of future work.

3.2.2. Seven Query Examples. Using the query skeleton of FlexPref, we now give

use case examples for seven state-of-the-art preference methods, namely, sky-
line [Borzsonyi et al. 2001], top-k [Chaudhuri and Gravano 19991, top-k dominat-
ing [Yiu and Mamoulis 20071, k-dominance [Chan et al. 2006a], and k-frequency [Chan
et al. 2006b]. These preference methods are used throughout the rest of this paper to
demonstrate the functionality of FlexPref.
Case Study I: Skyline. The skyline preference method returns objects in a data set
that are not dominated by (i.e., not strictly worse than) any other object in the data.
An example query using the skyline method is:

Select * From Restaurant R Preferring

R.price d1 AND R.dist d2 AND R.rating d3

Using Skyline

With Objectives MIN di, MIN d2, MAX d3;

This query will evaluate the skyline of restaurant data, where the preference objec-
tives require minimizing both price and distance attributes, while maximizing rating.
Case Study II: Top-k dominating. The top-k dominating method ranks each object
Q based on how many other objects it dominates, and returns the % objects with the
highest score. Given the same preference attributes as the previous query, the Using
clause for top-k dominating is:

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:8 Justin Levandoski et al.

Using Top-K-Domination With K=2 Objectives MIN di, MIN d2, MAX d3;
Here, the Using clause specifies that: (1) K=2 answers are required and (2) Preference
is based on minimizing both price and distance attributes, while maximizing rating.
Case Study III: K-Dominance. The k-dominance method redefines the traditional
skyline dominance definition to consider only k& dimensional subspaces, where & is less
than or equal to the total number of preference attributes. The Using clause for k-
dominance is:

Using K-Dominance With K=2 Objectives MIN di1, MIN d2, MAX d3;
For this case, the minimize/maximize objectives are similar to that of top-k domina-
tion and skylines. However, K specifies the number of dimensions used to check for
dominance, not the number of desired answers.
Case Study IV: K-Frequency. The k-frequency method ranks objects based on their
dominance count in all possible dimensional subspaces, and returns the k objects with
the minimal scores. The Using clause for k-dominance is:

Using K-Frequency With K=2 Objectives MIN di, MIN d2, MAX d3;
The objectives are the same as that of the top-k domination. However, k-frequency
evaluates these objectives in a different manner in order to retrieve the “best” objects.
Case Study V: Top-k The top-k method scores each object by combining the object’s
attributes using a monotonic ranking function (e.g., summation) that returns a single
real value. The k objects with the best scores are considered preferred objects. The
using clause for the top-k method is:

Using Top-K With K=2 Objectives MIN F'(d1,d2,d3);
In this clause, K=2 answers are required, while the objective is to minimize an object
score using monotonic ranking function F' combining preference attributes d1, d2, and
d3.
Case Study VI: k-Representative Skyline The k-representative skyline [Lin et al.
2007] is based on the same dominance property of the traditional skyline method.
However, this method scores each skyline answer by the number of other objects it
dominates, and returns the & objects with the highest score. The using clause for the
k-representative skyline method is:

Using K-Rep-Skyline With K=3 Objectives MIN di1, MIN d2, MAX d3;
In this clause, K=3 answers are required, while the preference objectives are exactly
the same as the skyline case previously discussed.
Case Study VII: Epsilon Dominance The epsilon-dominance (abbr. e-dominance)
preference method [Xia et al. 2008] alters the concept of traditional skyline dominance
to be more flexible. The idea is to increase or decrease the dominance region of each
object in the dataset by a constant ¢ (details covered in Section 8). The using clause for
the e-dominance is:

Using Epsilon-Dominance With E=1.5 Objectives MIN di, MIN d2, MAX d3;
In this clause, E=1.5 denotes that the dominance region should be increased by a factor
of 1.5, while the preference objectives are to minimizing both the price and distance
attributes, while maximizing the rating.

4. FLEXPREF GENERAL FUNCTIONS

This section provides the details of the three general functions necessary to implement
a preference method in FlexPref. To register a certain preference method, e.g., a sky-
line, the user needs to implement these three functions and populate them in the core
of FlexPref using the DefinePreference command described in Section 3.1. These func-
tions are used by the generic FlexPref operators during query processing, which we
describe in Section 5. We also provide seven case studies for how these functions can
be used to implement various preference methods in Section 8.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:9

Before discussing the three functions, we describe two macros that will be used by
our functions and the query processing techniques in Section 5

— #define DefaultScore: Each object in FlexPref is associated with a score that is in-
ternal to the underlying preference method. It is provided by FlexPref so that the
preference method may track the “quality” of each tuple during execution. Defining
a default score ensures that each object is assigned a value.

— #define IsTransitive: Indicates whether the method is transitive or not. That is, given
objects a, b, and ¢, if a is qualitatively “better” than b, and b is “better” than ¢, then
a is always “better” than c. Knowledge of transitivity leads to efficiency, as FlexPref
can discard objects during query execution if transitivity holds.

Three general functions need to be implemented by each preference method to be
registered with FlexPref.

— PairwiseCompare(Object P, Object Q): Given two data objects P and @, update the
score of P and return 1 if () can never be a preferred object, —1 if P cannot become a
preferred object, 0 otherwise. Alternatively, return —2 if the preference method does
not rely on pairwise comparison; returning —2 in this case leads to optimizations in
the preference evaluation algorithm.

— IsPreferredObject(Object P, PreferenceSet S): Given a data object P and a set of pre-
ferred objects S, return ¢rue if P is a preferred object and can be added to S, false
otherwise.

— AddPreferredToSet (Object P, PreferenceSet S): Given a data object P and a preference
set S, add P to S and remove or rearrange objects from S, if necessary.

These functions break down preference evaluation into a set of modular operations
that need not be aware of database query processor internals. FlexPref abstracts pref-
erence evaluation into two main operations: (1) pairwise comparison of two objects
(PairwiseCompare) and (2) comparison of an object with one ore more objects in the
current preference set (IsPreferredObject). FlexPref also provides a third function,
AddPreferredToSet, to allow the preference method to maintain the order of objects
and cardinality of its running set of preference answers. For example, each prefer-
ence method may keep the set S sorted in a manner advantageous to the execution of
IsPreferredObject. For preference methods that require k& answers, AddPreferredToSet
has the ability to add a new object while removing an old object to ensure that only %
objects exist in S.

In practice, implementing each of these functions is quite simple. We implemented
seven state-of-the-art preference methods in FlexPref; none of the functions we im-
plemented exceeded fifteen lines of code (details in Sections 8). In later sections, we
discuss additional functions necessary to provide further query processing optimiza-
tions. Section 5.3 discusses an additional function to optimize FlexPref for sorted data.
Meanwhile, Section 6 discusses functions to allow a preference method implemented
in FlexPref to optimize with existing relational operators.

In terms of the scope, FlexPref is able to support a range of qualitative (i.e., sky-
line) and quantitative (e.g., top-k/ranking) preference methods. We defer a detailed
discussion of preference method support to Section 7, where we explore a taxonomy of
theoretical properties that preference methods must meet in order to be supported by
FlexPref.

5. PREFERENCE EVALUATION IN FLEXPREF

This section explores the details of preference evaluation in FlexPref that uses the
three main functions, PairwiseCompare, IsPreferredObject, and AddpreferredToSet, de-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:10 Justin Levandoski et al.

Algorithm 1 Single Table Access in FlexPref

1: Function SingleTableAccess(TableReference T')
2: Preference Set S + ®

3: for each Object P in T do

4: P,core < DefaultScore

5 for each Object Q in 7" do

6: cmp < PairwiseCompare(P,Q)
7
8
9

if cmp = 1 then
if Q € S then remove Q from S
: if IsTransitive then discard Q from T
10: end if

11: if cmp = -1 then

12: if IsTransitive then discard P from T

13: Read next object P (go to line 3)

14: end if

15: if cmp = -2 then exit inner loop (go to line 17)

16: end for

17: if IsPreferredObject(P,S) then AddPreferredToSet(P,S)
18: end for

19: return S

scribed in Section 4. We will first present single table access, i.e., selection queries
over single table, in FlexPref in Section 5.1. Then, in Section 5.2 we discuss how Flex-
Pref'is optimized to process multi-table queries, i.e., join queries. Finally, we discuss a
query case when the input is represented as a set of sorted lists (i.e., indexes) in Sec-
tion 5.3. Without loss of generality, the examples throughout the rest of this paper use
numeric data. However, FlexPrefis compatible with methods for preference evaluation
over other data types (e.g., partially-ordered domains [Chan et al. 2005]).

5.1. Single-Table Access

Single table access selects a set of preferred objects from a single table. For instance,
all the query examples given in Section 3 use single table access where the objective is
to retrieve the set of preferred restaurants according to the given preference criteria,
where all data is stored in a single table R. We propose a block-nested loop (BNL) algo-
rithm to execute single-table preference evaluation. We chose a BNL approach for two
main reasons: (1) it is simple and appropriate for a generic framework since it is known
to work for executing a number of diverse preference methods; (2) it is appropriate for
cases when data is not indexed, which is a common case that must be handled by a
database. We discuss further optimizations for index access in Section 5.3.

The main idea is to compare tuples pairwise while incrementally building a pre-
ferred answer set. During execution, a data object P may be found to be dominated
(i.e., guaranteed never to be a preferred answer). If the underlying preference method
is transitive, P is immediately discarded and not processed further, thus leading to
more efficient execution.

Algorithm 1 outlines the main steps of single-table preference evaluation in Flex-
Pref. Underlined functions and definitions refer to those functions and definitions that
should be implemented separately for each preference method registered with Flex-
Pref, as described in Section 4. While simple, this single execution framework is very
powerful as it can accommodate many different preference evaluation methods. To
illustrate, Section 8 covers the implementation of seven state-of-the-art preference
methods in this framework with execution examples. It is important to note here that
Algorithm 1 is generic in the sense that it executes without knowledge of the general
preference function details.

The input to Algorithm 1 is a reference to a single database table 7" while the output
is the final set of preferred objects S. The algorithm begins by initializing the prefer-
ence set S to empty. Next, we loop over table T in a block-nested fashion. Object P

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:11

R S
ID]dl |d2 |[ID] a3 [a4
Preference 2 5 3 2 3 4
Preference Evaluation
. b 7 2 a 4 3
Evaluation
c 8 5 a 5 5
d 10 | 4 b 4 2
b 3 6
b 8 8
c 3 8
d 11 | 10
(a) Naive join (b) FlexPref join (c) Example data

Fig. 2. Join operator

is read in the outer loop, where definition DefaultScore assigns its initial score, while
object @ is read in the inner loop. Each pair of objects P and (Q are compared pairwise
using the generic function PairwiseCompare, where the score of object P is updated ac-
cordingly. If PairwiseCompare returns 1 (i.e., Q can never be a preferred object), and @
currently exists in the preferred set S, then @ is removed from S. Further, if the pref-
erence method is transitive, @ is discarded from table 7' mainly for efficiency sake. Due
to transitivity, an object that is dominated by @ is also dominated by P, thus there is
no need to track Q. In the case that the underlying preference method is not transitive,
we must still consider @ as it may invalidate other objects with which it has not yet
been compared. On the other hand, if PairwiseCompare returns -1, then P can never be
a preferred object. If transitivity holds, P is discarded from table T" and the next object
in the outer loop is read immediately. The argument here is similar to the case of re-
moving) should the underlying preference function be transitive. If PairwiseCompare
returns -2 (i.e., the preference method does not rely on pairwise comparison of objects),
the algorithm breaks out of the inner loop. Finally, if object P is not discarded in the
inner-loop, we call IsPreferredObject to verify if P is part of the preference answer. As
we will see in Section 8, this is usually a very simple function that performs an O(1)
check based on the properties of P and S without the need to iterate over S. If this
function returns true, P is added to S. The algorithm concludes by returning S after
the block-nested loop execution finishes.

5.2. Multi-Table Access

The join operation is one of the most common, and expensive, operations in a DBMS.
Joins are also an integral part of preference queries as well. For example, consider
a query asking about restaurant attributes price, distance, and rating, where price
and distance are stored in the same table while the rating information is stored in a
separate table. In this case a join is necessary to fulfill the preference query. We now
discuss how FlexPref handles join queries in an efficient manner. We do not assume
that input data is sorted or stored in a special indexing structure. In fact, the approach
is applicable to any join method (e.g., hash join, index-nested loop). For presentation
purposes, we discuss the case of a single binary join. However, the concept can be
extended to m-way joins or a tree of binary joins.

Figure 2(a) depicts a naive join-then-evaluate strategy to execute join preference
queries for two tables R and S. The idea is to perform a complete join over the two
input tables followed by a preference evaluation over the join result. This approach is
inefficient, as it does not attempt to optimize the underlying join operator. FlexPref
improves upon this naive execution strategy by using the preference criteria functions
to prune tuples from the join input that are guaranteed not to be in the final answer.
Figure 2(b) gives the FlexPref strategy for handling join queries where pruning is

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:12 Justin Levandoski et al.

performed at all join inputs, then, a final preference evaluation is performed after
joining the non-pruned tuples from each table. Pruning enhances join performance for
two main reasons: (a) the amount of data to be joined from input tables is greatly
reduced due to pruning the input data, and (b) the amount of data processed by the
final preference evaluation after the join is reduced based on the multiplying factor of
the join.

Algorithm 2 outlines the main steps for join operations in FlexPref where the input
is two tables, R and S, to be joined while the output is the set of preferred objects.
First, R and S are pruned by applying the single table access algorithm (Algorithm 1)
to each join-key group in both tables.

For example, consider the tables R and S in Figure 2(c). Assuming ID as a join
key, table S contains four groups «, b, ¢, and d that contains three, three, one, and
one tuple(s), respectively. Also, table R trivially contains four single-tuple groups. In
this case, single table access would be performed locally over each group in S only, as
R’s groups contain only a single tuple. By doing so, and according to the underlying
preference method, several tuples from each group in S could be pruned, and thus,
do not need to be joined with tuples in R. This main idea is that we guarantee that
these tuples cannot be preferred objects (similar pruning concepts have been proposed
in [Chomicki 2003; Hafenrichter and Kieflling 2005; Endres and KieBlling 2011]).

Pruning in Algorithm 2 works for the following reason. For each local join-key group,
assume we have a set of preferred tuples P and non-preferred tuples N. We can say
that tuples in P are “better” than tuples in N within each join-key group. Given two
tables R and S, the tuples in each join-key group of S will join with the same tuples
in R. If the pruned tuples N in S are worse than those in P, then tuples in N cannot
become better once joined with the same data as the tuples in P. Thus, the pruned
tuples N can never be part of the preference query answer.

Once the pruning is done locally for each group in tables R and S, the rest of the
entries in both tables, R, uneq and Spruneq, are joined together using any join method
(Line 4 in Algorithm 2). Finally, FlexPref performs another single table access over the
entire join result J. This is mainly because the non-pruned tuples form R and S have
not yet been compared against each other. The result of this step is the final result of
the preference query.

To make the pruning concept concrete, we now provide a brief example for both
the skyline and top-k preference methods (examples for more methods can be found
in Section 8). Consider generating the skyline by joining tables R and S in Fig-
ure 2(c) using the predicate R.id=S.id. Focusing on table S, we can safely prune four
records {(a,3,4),(a,4,3)} and {(b,4,2),(b,3,6)} since they are dominated within their
join key groups by (a,5,5) and (5,8,8), respectively. These pruned records have no
chance of being skylines when joining with a matching tuple from table R ((a,5,3) and
(b,7,2), respectively). Similarly, consider generating a top-k answer by joining R and
S (R.id=S.id), where k = 2 and we use a monotonic function F(d1,d2,d3,d4)=5(d;) to
score each record. In this case we can safely prune (5,4,2) and (a,3,4) (or equivalently
(a,4,3)) from S, since neither are the top-2 records within their join key groups accord-
ing to F(d3,d4). Likewise, since the pruned tuples were not top-2 within their own join
key group, they will not contribute to the overall top-2 answer if they were to join with
a matching tuple from R.

5.3. Sorted List Access

This section explores how to efficiently perform preference evaluation if each of the
attributes in the PREFERRING clause is available in sorted order. For instance, each
attribute could be stored in a 2-ary table as (id, attribute value) tuples (i.e, a fully de-
composed storage model [Copeland and Khoshafian 1985]), or the attributes could be

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:13

Algorithm 2 Multi-Table Access in FlexPref

1: Function MultiTableAccess(Table R, Table S)
Ryruned < Prune R: apply function SingleTableAccess to each join-key group in R.

Spruned < Prune S: apply SingleTableAccess to each join-key group in S.

J < Join over Ry ;yned and Spruned using any join method.
: return SingleTableAccess(J) /* Algorithm 1 */

g N

d1
5
7
8
10
12
13

o
~

—lolale c‘mls
o [=e el |8

o [=|al=]e|= (B
=y = EN I I 1]

o) BN KUY BN RUR) I S)

13

Fig. 3. Sorted list example

indexed by a B-tree. The main idea we explore here is to generate a complete and cor-
rect preference answer after reading only a fraction of the sorted data. This approach
could potentially reduce the I/O overhead compared to query processing over unsorted
or non-indexed data.

Figure 3 gives an example of three attributes stored using the decomposed storage
model, where each table: (a) includes the tuple ID, and (b) is sorted on the attribute
value. Note that sorted lists are also an abstraction of an ordered index, such as a B-
tree. Several techniques have been proposed in the literature to take advantages of the
sorted lists in preference evaluation, e.g., top-k [Ilyas et al. 2003] and skyline [Balke
et al. 2004]. This section presents a generic algorithm that exploits sorted lists for
query efficiency that works for any preference method compatible with FlexPref.

The main idea behind sorted list access in FlexPref'is as follows: (1) Tuples are read,
one-by-one, from each list in a round-robin fashion. During this time, we incrementally
create a list P of partial objects. This list stores the id of each tuple read so far, along
with all values of the tuple that have been read. For example, say we read the first
tuple from each list in Figure 3. In this case, P would store two objects: (a,5,-,3) and (b,_,
2,.). (2) Round-robin processing ends once a stopping condition is met. This condition is
defined by an extensible function, provided by the preference function implementation.
(3) After stopping, all partial tuples in P are “completed” by making a random access
to each sorted list to fill in missing attributes. To complete an object (a,5,-,3), table D2
would be probed to form («,5,3,3). (4) Finally, we perform a final preference evaluation
over the list P.

To realize this idea, and to take advantage of sorted lists, FlexPref requires that each
preference method defines the following function in addition to the three functions
described in Section 4.

— StopSortedEval(Set P, Object 0, Object F): Given a set of partial objects P and two
virtual objects O and F, return whether objects currently in P, once completed, are
sufficient to perform preference evaluation.

The arguments O and F in StopSortedEval are named virtual objects since they store
the last and first values read from each input list, respectively. For example, read-
ing round-robin twice from each list D1 to D3 in Figure 3 will produce O=(7,3,3) and
F=(5,2,3).

Algorithm 3 outlines the main steps of sorted list preference evaluation in FlexPref
that takes as input a reference to n decomposed relations (Lists), sorted by attribute
value (i.e., sorted lists). Each tuple in a list has two attributes, t.id and t.value; we

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:14 Justin Levandoski et al.

Algorithm 3 Sorted List Access in FlexPref

1: Function GeneralSortedAccess(Lists[n], CheckInterval)
2: stop < false; count < 0
3: Partial Set P < ©
4: Y,<, Olil=6; F[il=6
5: while stop = false do
6: Read next tuple ¢ from Lists[:] in round-robin order
7: if first value read from List[:] then F[il=t.val
8: Oli]=t.val
9: Update/Add tuples to P by combining ¢ with existing tuples on t.id
10: if count(modulo)CheckInterval = 0 then
11: stop < StopSortedEval(P, O, F);
12: else
13: increment count
14: end if

15: end while

16: for each incomplete point ¢ € P do

17: V; s.t. j is an incomplete dimension of ¢, make random access to Lists[;j] to complete ¢
18: end for

19: return SingleTableAccess(P) /* Algorithm 1 */

assume tuples are combined using t.id. The algorithm also takes as input an integer
ChecklInterval, used to throttle the check for a stopping condition after the number
of round-robin list retrievals specified by CheckInterval value. Calling StopSortedEval
after every attribute retrieval may be expensive, so the CheckInterval value is imple-
mented for efficiency reasons. It has no effect on the correctness of the algorithm, since
it is alright to check for the stopping condition less often. Initialization sets a boolean
value stop to false, an integer count to zero, and partial set P along with virtual ob-
ject O and F to null (Lines 2 to 4). Round-robin processing then starts, and continues
until the boolean stop is set to true by StopSortedEval. A tuple ¢ is read from the cur-
rent round-robin input list i, and if it is the first tuple read from i, the i** dimension
of I is set to t.value. Meanwhile the i** dimension of O is also set to t.value (Lines 7
to 8). One or multiple tuples are then updated or added to P based on combining ¢ with
previously-read tuples based on t.id. If this iteration must check for stopping condi-
tion (i.e., count module CheckInterval equals zero), the boolean stop is set by calling
extensible function StopSortedEval. Otherwise, count is incremented and round-robin
processing continues (Lines 9 to 14). After round-robin processing, all objects in P are
then “completed” by making a random access to the necessary lists(s) (Lines 16 to 18).
Sorted access processing concludes by performing single-table preference evaluation
over set P using the algorithm outlined in Algorithm 1 (Line 19).

The method used to build partial objects (Line 9 in Algorithm 3) can be implemented
in many ways. For robustness, FlexPref builds partial objects by abstracting the oper-
ation as an m-way symmetric hash join [Wilshut and Apers 1993] between n decom-
posed (i.e., 2-ary) relations. The idea behind the symmetric hash join is to store a hash
table for each input list ;. When a tuple ¢ is read from list 7, it is hashed to table ¢ using
the value of its join attribute. Tuple ¢ is then used to probe all other hash tables to
produce partial (or full) objects.

In addition, it is possible to use the sorted-list algorithm within the pruning step of
the preference join algorithm (Algorithm 2). We can simply replace the calls to Sin-
gleTableAccess in lines 2 and 3 of Algorithm 2 with calls to GeneralSortedAccess. Of
course, this assumes that all attributes in either the left or right join relation are
available in sorted order (e.g., indexed by a B-tree).

6. QUERY OPTIMIZATION WITH FLEXPREF

Query optimization is responsible for the selection of efficient pipelined query execu-
tion plans. In some cases, the difference between a good and bad query plan can result

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:15

in an order of magnitude performance difference. In this section, we explore query opti-
mization techniques for the generic FlexPref operators necessary to integration with a
traditional relational query optimizer. The framework discussed in this section allows
for FlexPref to become a first-class citizen in a database engine, and allows the query
optimizer to consider efficient query plans that contain generic FlexPref operators cou-
pled with traditional relational operators (i.e., select, prOJect join). We first explore cost
estimation of FlexPref operators under dlfference scenarios. Next, we explore FlexPref
support for cardinality estimation. Finally, we explore a number of relational algebra
equivalence rules for FlexPref, studying commutability with the following standard
relational operators: selection, join, and projection.

Since FlexPref is a generic framework, many of the query optimization rules de-
pend on the semantics of the preference method executing within FlexPref. Many of
these rules are known [Chomicki 2003; Endres and Kief3ling 2011; Hafenrichter and
Kieflling 2005]. Our goal in this section is not to develop new query optimization rules
for each preference method that could be implemented within FlexPref. Rather, we
discuss how query optimization may be achieved in relational database system that
implements the FlexPref engine. In many cases, we revisit existing query optimiza-
tion techniques, and classify which techniques apply to FlexPref.

6.1. Cardinality Estimation

The output cardinality of the FlexPref operator (both single table and join) depends
completely on the semantics of the preference method executing within FlexPref. For
example, for preference methods capable of producing k results (e.g., top-k, k-frequency,
top-k domination), the cardinality when implemented in the FlexPref operator is obvi-
ously k. However, the answer to a skyline query is not a total order, thus the answers
cannot be “ranked” to produce exactly & results. Therefore, several skyline cardinality
estimation techniques have been developed based on statistical sampling of the input
relations [Chaudhuri et al. 2006; Zhang et al. 2009].

Since output cardinalities are unique to a preference method, FlexPref provides a
plugin function to provide the query optimizer with the output cardinality of a specific
preference method executing within FlexPref. The signature for this function is as
follows.

— EstimateCardinality(InputCard C, [Optional] InputRelation R): Given the input cardi-
nality, and optionally a reference to the input relation (if available), return the ex-
pected cardinality of the preference method implemented within the FlexPref frame-
work.

The input to this function is (1) the cardinality of the input data. This value can be
the cardinality of a database table, or the estimated cardinality derived by the query
optimizer for an operator that feeds data to the FlexPref operator. (2) If the input to
FlexPrefis a relational table R (and not a pipeline operator), a reference to R is passed
to the estimation function. This reference is provided in order to accommodate tech-
niques that benefit from sampling the underlying relation (e.g., skylines [Chaudhuri
et al. 2006]). The EstimateCardinality function is invoked as part of the background
statistics collection and caching process common in most database systems. The func-
tion does not need to be invoked after each query. Rather, the database may call the
function once to retrieve and cache initial cardinality statistics, and call it again in the
future if it suspects statistics have changed significantly.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:16 Justin Levandoski et al.

6.2. Cost Estimation

In this section, we provide an analysis of the cost estimates for the three versions of
the FlexPref operator presented in Sections 5.1 through 5.3. Our cost metric is page
I/Os: the most common database cost metric.

6.2.1. Single-table FlexPref Operator. The single-table FlexPref is implemented as a
block-nested loop algorithm (i.e., Algorithm 1). We assume the input relation 7' is
stored on N pages, and that B pages are available in each block.

Two factors of the preference method influence the cost estimate of the FlexPref
single-table operator: (1) whether the preference method requires exhaustive pair-
wise comparison (i.e., the plugin function PairwiseCompare does not return -2), and
(2) whether the preference method is transitive. We identify three cases where the
combination of these factors leads to different cost estimates.

Case 1. If the preference method requires exhaustive pairwise comparison and is not
transitive, the cost can be estimated as N (/N — B). Essentially, NV pages will be read in
the outside loop of Algorithm 1, B pages at a time. The number of pages read in the
inside loop is (N — B), which is the rest of the pages in relation 7" less the B pages
already in memory (read for the outside loop).

Case 2. If the preference method does not require exhaustive pairwise comparison,
regardless of whether it is transitive, the cost is estimated as N (i.e., a single scan).
Essentially, if a score can be derived for an object without comparing it to each other
object in 7', the inside loop of Algorithm 1 is not needed.

Case 3. If the preference method is transitive and requires pairwise comparison, the
cost is estimated as (N — P)(N — (B + P)). The variable P represents the amortized
number of pages that can be discarded during runtime due to preference method’s
transitivity property. In this case, if enough tuples are discarded from in-memory pages
during preference evaluation, these pages can be compacted, meaning less page reads
in subsequent passes of the nested-loop algorithm.

6.2.2. Multiple-table FlexPref Operator. The cost of the multi-table FlexPref operator con-
sists of the sum of three costs: pruning, joining, and the final on-top preference eval-
uation (Section 5.2). Recall that the pruning step consists of applying the single-table
FlexPref operator to each join key group for both join input tables (Algorithm 2). We
focus on the cost of pruning a single join input table, as the analysis is symmetric for
both inputs. Given a join input consisting of N pages, there are two cases that yield
different I/O costs: (1) If the join key group is clustered, the cost of pruning is N 1/Os,
as pruning can be done in a single pass. This cost assumes the number of pages stor-
ing each join key group fit in memory, which is very likely. (2) Otherwise, the cost of
pruning a join input is the I/O cost of performing a group by, necessary to group the
join key attributes. We assume the pruning step is performed on in-memory pages
resulting from the group by.

To predict the cost of the join operation, we can use any existing cost function for
any standard database join (e.g., [Shapiro 1986]), since FlexPref functions regardless
of the join method used. However, the cost function employed will be reliant on the
input cardinalities in order to yield an accurate estimate. Since the pruning step re-
moves tuples from the join input, we must find a reliable estimate for the join input
cardinalities. Given input relations R and S of size N and M pages, respectively, the
size (in pages) of the inputs to the join is (N-Pg) and (M-Pgs), where Pgr and Pg rep-
resent the number of join input pages saved by the pruning operation over R and S,
respectively. The size of Pr can be estimated by applying the EstimateCardinality
function (described in the previous section) to the average size of each join key group
for table R in order to yield an estimated prune cardinality. Subtracting this prune

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:17

cardinality from the cardinality of R yields the number of pruned tuples; dividing this
number by the database page size yields the value of Pr. Calculating Ps is similar.

The cost of the final preference evaluation is the cost of the single-table FlexPref
operation performed after the join. This final cost estimate is necessary, since the final
preference evaluation is non-blocking, thus cannot be performed on the fly. This cost
was covered in Section 6.2.1, with the exception that the input size is number of pages
produced by the join operation.

6.2.3. Sorted List FlexPref Operator. The I/0 performance of the FlexPref sorted list op-
erator depends heavily on the stopping condition (implemented in plugin function
StopSortedEval), and the correlation of each of the D attributes in the preference
query (e.g., anti-correlated, correlated, or independent). Modeling an exact cost func-
tion based on these properties is extensive, and outside the scope of this paper. How-
ever, the average cost of the sorted list operator is O(N), derived as follows. Given D
attributes in a preference query, the best case cost is D * 1, meaning a single page is
read from each input relation. Since D is a constant, the best case is O(1). The worse
case costis Dx N, i.e., O(N) since all pages must be read from each sorted relation. The

average case cost is DQN , where only half the data is read from each sorted relation.

6.2.4. Cost of Plugin Functions. Given the cost analysis done so far, the primary I/O
overhead for each generic FlexPref operator is dominated by its generic data retrieval
steps. The custom plugin functions for each operator are designed to require only sim-
ple and straightforward operations (e.g., tuple comparison, list insertion) that we be-
lieve lead to negligible I/O overhead. In the rest of this section, we justify this claim,
referring to the non-plugin steps executed by FlexPref as primitive operations, and the
extensible steps as plugin operations.

Based on our previous analysis and our experience implementing existing prefer-
ence methods in FlexPref (see Section 8), we believe the plugin operation overhead will
be small compared to the rest of the query processing framework. For instance, con-
sider the generic functions IsPreferredObject and AddPreferredToSet. For the single-
table FlexPref operator (Algorithm 1), these functions have the potential to incur the
most I/0, since their plugin operations are responsible for maintaining and organiz-
ing data (tuples) in the current preference answer. For preference methods that report
k answers (e.g., top-k, k-frequency), the maximum size of the maintained preference
answer will be k. Since k is likely to be small (compared to the data set size), the plu-
gin operations will operate on data (i.e., the answer set) that fits on (at most) a few
memory-bound pages, leading to negligible (if any) I/O costs. Meanwhile, preference
methods that cannot maintain an answer set based on total rank order are less pre-
dictable. Focusing on skylines, given a data set with d independent dimensions and
a cardinality of n, the expected number of skyline objects is ©(In?~'n/(d — 1)!) [God-
frey et al. 2005]. However, the skyline size can be considerably larger in the worst
case [Chaudhuri et al. 2006; Godfrey 2004].

Special consideration is required for the sorted list plugin operations of function
StopSortedEval. This function operates over a potentially large data structure contain-
ing partial tuples. Since the cardinality of the partial tuple data could reach the size of
the input data, the StopSortedEval function has the potential to incur non-trivial I/O
in this worse case. However, since the call to StopSortedEval can be reduced to every
M jteration of the sorted list FlexPref algorithm, the I/O overhead of StopSortedE-
val is likely to be amortized over the runtime of the sorted list algorithm. Thus, the
I/O cost of the sorted list algorithm will still be dominated by the primitive FlexPref
operations.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:18 Justin Levandoski et al.

6.3. Equivalence Rules

Along with cost and cardinality optimization, the last piece of information needed to
optimize preference queries with FlexPref is a set of algebraic equivalence rules. In
this section, we present relational algebra equivalences necessary for the database to
optimize FlexPref in a standard select-project-join (SPJ) query. We first discuss com-
muting selection with the FlexPref operator. We then discuss distributing FlexPref
over the join operations. We note that the join distribution rule studied serves a differ-
ent purpose than the multi-table algorithm presented in Section 5.2. The purpose of
join distribution is to study an equivalence that allows us to “push down” the single-
table FlexPref operator before a standard join operation, without having to perform
preference evaluation again on top of the join. Finally, we present rules for commuting
FlexPref with projection.

In the rest of this section, we symbolize the FlexPref operator with the algebraic
notation Fgop. The symbol O represents the preference method implemented in Flex-
Pref (e.g., © = skyline). The symbol P represents the set of preferences specified in our
extended SQL clause Objectives presented in Section 3.2.1. For instance, preference
objectives P for skyline could be min price and min distance.

6.3.1. Commuting Selection with FlexPref. The ability to commute selection with FlexPref
is one of the most important optimizations necessary to efficient preference query pro-
cessing. Due to the cost of the FlexPref operator in the average case (covered in Sec-
tion 6.2.1), pushing selection can greatly increase query efficiency by data input into
FlexPref. Formally, we study the following equivalence.

oc(Fop(R)) = Fop(oc(R))

Where C is the selection condition, and R represents a single relational input.

Unfortunately, due to the wide variety of preference methods that can be imple-
mented within the FlexPref framework, there is no standard selection commutability
law that applies to FlexPref. In fact, a preference method can fall into one of three
classifications for commutability with the selection operation.

(1) Always commutes. In this class, the semantics of the preference method allow
selection to be placed before or after preference evaluation, regardless of the selection
condition. A prime example of a preference method in this class is ranking [Li et al.
2005]. Since the rank value of each object is only a function of the attributes of the
object (i.e., the rank does not require comparison to other objects), ranking commutes
with selection regardless of the preference objectives P or selection condition C.

(2) Conditionally commutes In this class, selection commutability is conditional upon
the constraints in either the selection predicate C, the preference objectives P, or
a combination of both. An example of a preference method in this class is the sky-
line [Borzsonyi et al. 2001] method, where it has been shown that, in order to com-
mute (a) the selection condition must be specified over an attribute that is also a
preference objective and (b) the selection condition cannot contradict the preference
objective [Chomicki 2003].

(3) Never commutes In this class, the semantics of the preference method never al-
low commutability with selection. An example of a preference method in this class
is top-k dominance [Yiu and Mamoulis 2007]. Since this method ranks each object O
based on the number of other objects O dominates in relation R, performing selection
before preference domination can remove important tuples and thus alter rank values,
changing the final preference answer.

In order to correctly optimize preference queries involving any three of these selec-
tion commutability classes, the FlexPref framework extends the query optimizer with

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:19

a plugin function that specifies whether the running preference method commutes
with selection. This plugin function is written by the preference method implementer.

— SelectionCommute (Selection condition C, Preference objectives P): Give the selec-
tion condition and preference objectives, return whether the preference method can
commute with the selection operation.

This function returns true for preference methods that always commute, and false
for methods that never commute. Thus, implementation of this function is necessary
for functions that conditionally commute. In Section 8, we study the selection com-
mutability rules implemented in this function for our seven case study methods.

6.3.2. Distributing FlexPref over EquiJoins. For FlexPref to distribute over the join oper-
ation on two relations R and S, we are required to “break up” the preference objec-
tives in P into: (1) Pg, the objectives that apply to attributes in R, and (2) Pg, the
objectives that apply to attributes in S. As an example, consider a skyline query over
relations Hotels S and Restaurants R with P={min S.price, max S.rating, min R.price,
max R.rating}. Here, Pr={min R.price, max R.rating}, while Pg¢={minS.price, max
S.rating}. Formally, we investigate the following equivalence.

Fop(RXNz S) = Fopy(R) Mg Fops(S)

Where J represents the join predicate. Note that if 7 = ¢, the join is a Cartesian
product.

The distribution of FlexPref over a join is dependent on three main factors: (1) the
preference method O, (2) the join predicate 7, and (3) whether P=Pg or P=Pg, that is,
whether the preference objectives apply to attributes in only R or S. No standard join
distribution law applies to FlexPref. For instance, the skyline preference method has
been shown to distribute with Cartesian product [Chomicki 2003] (i.e., when J = ¢).
Skyline also distributes over a join when P=Ppr (or P=Ps) in the case of an equijoin,
i.e., the preference objectives apply to attributes only in R or S. However, skyline does
not distribute for an equijoin when objectives in P apply to attributes in both R and
S. Meanwhile, the top-k method does not even distribute over a Cartesian product.
Assuming P applies to attributes in both R and S, the top-k evaluation cannot be
“pushed down” below the Cartesian product, as this transformation would produce
k inputs to the Cartesian product from both R and S, meaning k? results would be
generated from the Cartesian product. Essentially, this “push down” rule will not work
for any method designed to produce k results (e.g., top-k domination) without also
integrating preference evaluation within or on-top of the join (e.g., see [Li et al. 2005]).

In order to correctly optimize preference queries involving various preference meth-
ods exhibiting different distribution rules for join, the FlexPref framework provides a
plugin function that specifies whether the running preference method commutes with
a join operation. The definition of this function is as follows.

— JoinDistribute(Preference objectives P, Join predicate J, R Attributes Agr, S
Attributes Ag): Given a set of preference objectives, the join predicate, the tuple
attributes of input relation R, and the tuple attributes of input relation S, return
whether the preference method can distribute over the join operation.

In Section 8, we provide the implementation details of this plugin function for our
seven case study methods, along with extensive examples.

6.3.3. Commuting Projection with FlexPref. Given a projection operation m,, where V is
the set of projected attributes, we investigate the following equivalence.

my(Fer(R)) = Fop(my(R))

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:20 Justin Levandoski et al.

Table I. Binary relation properties supported by FlexPref

Property Definition FlexPref
Support
Reflexive te >pts, Ytz € R Not Allowed
Irreflexive —(tz =p tz), Vte € R Required
Symmetric (te >p ty) = (ty >p ta), Vla, ty ER Not Allowed
Transitive (te =p ty) N(ty =p tz) = (tz >=p tz), Vtg,ty,t. € R, | Allowed
by by # 1o
Asymmetric (te >p ty) = (ty >ptz), Vi, ty ER Allowed
Antisymmetric | (tz >p ty) A (ty >p tz) = (te =1ty) , Viz,ly € R Allowed
Connective (te =p ty) V (ty =p tz) V (te =ty), Ve, ty €ER Allowed

Projection will always commute with FlexPref, no matter the preference method O, as
long as P C V,i.e., the set of attributes in the preference objectives are contained in the
set of projected attributes. If this case does not hold, and projection is performed before
FlexPref, at least one attribute in P will be discarded prior to preference evaluation,
which is illegal.

7. SUPPORT FOR PREFERENCE METHOD PROPERTIES IN FLEXPREF

In this section, we present a taxonomy of theoretical properties that are supported
(and not supported) by FlexPref. The goal here is to present a road map for database
practitioners, such that creators of new (or existing) preference methods can easily tell
if their method qualifies for implementation in FlexPref. Looked at another way, the
content of this section serves as a theoretical foundation of FlexPref, as it defines the
boundaries of what is theoretically possible to accomplish within the FlexPref frame-
work. In the rest of this section, we discuss our taxonomy of theoretical properties bro-
ken down into the following five classes: (1) binary preference relations, (2) preference
granularity, (3) preference definition types, (4) preference composition, and (5) deter-
ministic and non-deterministic answers.

7.1. Binary Preference Relation

In this section, we explore seven binary relation properties that preference methods
must meet for implementation in FlexPref. These properties are listed in Table I, and
have become standard in categorizing preference evaluation approaches [Chomicki
2003; Koutrika et al. 2010; Stefanidis et al. 2011]. We note that these properties also
have a corresponding graph representation [Koutrika et al. 2010; Stefanidis et al.
2011]. For each property, we give: (a) A formal definition, in terms of a binary pref-
erence relation >, defined between two tuples in a relation R. These formal definitions
are given in Table I (b) A classification of whether FlexPref supports preference meth-
ods that exhibit the property. Three classifications are possible: (1) Not Allowed, the
semantics of the property are not supported by FlexPref; (2) Required, the preference
method must adhere to the property to be implemented in FlexPref; (3) Allowed, Flex-
Pref is indifferent to whether the preference method exhibits the property.

7.1.1. Reflexive. The reflexive property states that all tuples can dominate themselves.
This property makes (non-empty) preference answer derivation impossible, and is not
allowed in FlexPref.

7.1.2. Irreflexive. The irreflexive property states that no tuple can dominate itself. In
FlexPref, a tuple is never compared with itself in the generic query processing frame-
work. Thus, embedded preference methods must be irreflexive, i.e., no tuple can domi-
nate itself.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:21

Table Il. Preference granularity properties supported by FlexPref

Granularity Definition FlexPref Support
Tuple Preferences defined at the tuple level, preference evalua- | Supported
tion performed between two individual database tuples
Set Preferences defined between a set (or cluster) of common, | Limited Support
preference evaluation performed between tuple sets
Attribute Preferences defined between attributes, used to determine | Not Supported
which attributes are more important in preference evalu-
ation

7.1.3. Symmetric. The symmetric property states that for all pair of tuples, the domi-
nance property is symmetric (i.e., each pair can dominate each other). Preference func-
tions exhibiting the symmetric property are not allowed in FlexPref. If all tuples can
dominate each other, deriving a non-empty preference answer is impossible.

7.1.4. Transitivity. FlexPref handles both transitive and non-transitive preference
methods. As discussed in Section 6.2, transitivity leads to optimizations in FlexPref
query processing, and more query processing overhead for non-transitive methods.

7.1.5. Asymmetric. The asymmetric property states that for all tuple pairs ¢, and t,,
if ¢, dominates ¢,, then ¢, can never dominate ¢,. FlexPref is indifferent to whether
a preference method exhibits the asymmetric dominance property, as dominance is
evaluated both ways for all tuple pairs. It is important to note that a non-symmetric
preference method does not imply the method exhibits symmetry.

7.1.6. Antisymmetric. The antisymmetric property states that for all tuple pairs ¢, and
ty, if the pair exhibits symmetric dominance then ¢, and ¢, are equivalent. FlexPref can
support preference methods where tuples dominate each other but are not equivalent
(discussed previously for the asymmetric case). Thus, FlexPref is indifferent to the
antisymmetric property.

7.1.7. Connective. The connective property implies a total order (or strong order) can
be derived using the preference method. The ability to assign a numeric score to each
tuple in FlexPref implies that FlexPref supports connective preference methods (e.g.,
top-k). However, scoring tuples is not a requirement in FlexPref, thus non-connective
methods (e.g., skylines) are also supported.

7.2. Preference Granularity

Preference granularity refers to the “level” at which preferences are expressed and
evaluated. Table II summarizes the preference granularity properties supported by
FlexPref. There are three granularity properties we consider.

7.2.1. Tuple-level granularity. Preferences at this granularity are expressed at the tu-
ple level, usually through the values of their attributes (e.g., minimize price, max-
imize rating). Preference evaluation is performed between two individual database
tuples. Tuple-level preference granularity is the most widely used in practice (e.g.,
skyline [Borzsonyi et al. 2001], k-dominance [Chan et al. 2006a]). FlexPref supports
tuple-level preference granularity, as its core functionality compares tuples pairwise
in building a preference answer.

7.2.2. Set preferences. Set properties allow users to express preferences constraints
over a set of tuples. For instance, a user may prefer a set of four restaurants, mini-
mizing price and distance, where two of them should be Chinese restaurants. FlexPref
supports set preferences in a limited fashion. FlexPref does not support set preferences
at neither the syntax nor query processing level. However, FlexPref does support a lim-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:22 Justin Levandoski et al.

Table Ill. Preference definition properties supported by FlexPref

Property Definition FlexPref Support

Numeric Preference expressions over numeric tuple attributes Supported

Categorical Preference expressions over categorical tuple attributes Limited

Contextual Numeric or categorical preference expressions valid only | Not Supported
under given contextual constraints

ited form of set preferences if the set can be expressed using aggregation and trans-
formed into a single tuple. In this case the FlexPref operators can evaluate the result
tuples from the aggregate operator(s).

7.2.3. Attribute preferences. Attribute preferences allow the user to express prefer-
ences between attributes, such that the top-n attributes are included in the prefer-
ence query [Koutrika and Ioannidis 2004]. For instance, one could specify that prefer-
ences over a restaurant price attribute should matter more in a preference query than
restaurant rating. FlexPref does not support attribute-granularity preferences at the
syntax nor query processing level.

7.3. Preference Definition

Preference definition properties refer to how a user expresses preferences, and what
type of data a user can express preferences over in the system. We consider a classifica-
tion of four different preference definition properties in FlexPref. Table III summarizes
these properties and their support in FlexPref.

7.3.1. Numeric Preferences. Numeric preferences refers to support for preferences de-
fined over numeric attributes. FlexPref supports numeric preferences using the MIN
and MAX expressions. Numerical ranking (i.e., top-k processing) is supported by
specifying a monotonic ranking function as a user-defined function within the With
Objectives clause (see the top-k example in Section 3.2.2). FlexPref also supports triv-
ial substitutable value (SV) semantics [KieB3ling 2002] on single attributes. An exam-
ple is the AROUND preference from PreferenceSQL that substitutes a stored value z
with its distance to a given value v, formally, abs(z — v). FlexPref supports this class of
preferences by allowing user-defined functions in its With Objectives clause(e.g., MIN
abs (x-v)). These functions are applied to a tuple before processing by the FlexPref
operator.

7.3.2. Categorical Preferences. The focus of the FlexPref framework is primarily on nu-
merical attributes. However, FlexPref provides limited support for categorical prefer-
ences by translating categorical preferences to numerical preferences. We classify this
support as limited since the translation must be performed as a pre-processing step
using a set of categorical preferences given by the user.

To perform the translation, we assume that categorical preferences are expressed us-
ing the common “better-than” graph [Kieflling 2002; Wong et al. 2008]. A better-than
graph is a finite, acyclic, directed graph, where nodes represent values of a category
attribute, and a directed edge between nodes specifies that the source node is preferred
over the destination node. For example, assume a user expressed the following prefer-
ences for a restaurant type categorical attribute: (Thai— Chinese), (Italian— French),
(French— Chinese). From these preferences, we can construct a better than graph as
depicted in Figure 4, where each node is assigned a level value (lower is better). The
level is the minimum number of graph traversals, starting from a “best” node, neces-
sary to reach the destination node, where a “best” node is a node with no incoming
edges (Italian and Thai at level 0 in Figure 4). All unspecified nodes are assigned the
highest level, labeled “everything else” in Figure 4. Substituting the numeric level

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:23

Levelo (_ltalian) ([Thai]

Everything
Else

Fig. 4. Categorical preferences represented as “better-than” graph

Level 1

Level 2

Level 3

value for each category value, we can then transform the categorical preference into
numeric preference expression that minimizes the level value.

7.3.3. Contextual Preferences. Contextual preferences are preference expressions that
are valid only if a given contextual constraint holds. For example, a user may prefer
expensive French restaurants over Chinese restaurants only if the weather is sunny.
Contextual preferences can be qualitative [Agrawal et al. 2006] or quantitative [Ste-
fanidis and Pitoura 2008].

FlexPref supports neither type of contextual preference at the syntax or query pro-
cessing level due to the high overhead needed to process contextual preference queries.
In general, support for contextual preferences requires an offline “reconciliation” step
used to disambiguate conflicts in contextual constraints. For instance, a user may
have the following two conflicting preferences: (1) French restaurants preferred over
Chinese restaurants if the weather is sunny; (2) Chinese restaurants preferred over
French restaurants if weather is sunny and cold. In this example, a reconciliation
step is needed to break the cyclic preference for French and Chinese restaurants. This
reconciliation step is NP-hard [Agrawal et al. 2006]. There have been recently been
modular approaches to constructing context-aware preferences [Roocks et al. 2012],
though FlexPref does not support this approach.

Table IV. Preference composition properties supported by FlexPref

Composition Definition FlexPref Support
Pareto compo- | Base preferences given equal importance in preference | Supported

sition method
Prioritized Base preferences can be prioritized, some more important | Not Supported
composition to preference method than others

7.4. Preference Composition

Preference composition refers to how a preference method assumes base preferences
are combined. In FlexPref, multiple base preferences are listed in the PREFERRING
clause, separated by the AND keyword. Examples of two base preferences for restau-
rant data are minimize price and maximize rating. Two alternatives exist for prefer-
ence composition; their support in FlexPref is summarized in Table IV.

7.4.1. Pareto composition. Pareto composition treats all base preferences as equally im-
portant. Due to its commonality, Pareto composition with trivial substitutable seman-
tics [KieBlling 2002] is supported by FlexPref.

7.4.2. Prioritized composition. Prioritized composition allows users to “rank” base pref-
erences based on importance [Kief3ling 2002]. For instance, a user may state that mini-
mizing price is more important than maximizing rating when looking for a restaurant.
Prioritized preference composition is used very little in practice, as it is not used by

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:24 Justin Levandoski et al.

Table V. Deterministic and non-deterministic answers in FlexPref

Property Definition FlexPref Support
Deterministic an- | Query processing logic has ability to produce deterministic | Supported

swers answer
Nondeterministic Query processing logic has ability to produce nondeter- | Supported
answers ministic answer

many preference methods. FlexPref does not support prioritized composition at the
syntax or query processing level.

7.5. Deterministic and Non-Deterministic Answers

In this section, we discuss FlexPref support for preference methods that produce de-
terministic and non-deterministic answers, summarized in Table V.

7.5.1. Deterministic Answers. FlexPref supports the ability to produce deterministic
preference answers, meaning multiple runs of the same preference query over the
same data will produce the same answer. At its core, FlexPref is a generic framework
that provides a query processing framework for preference methods, while determin-
ism of a preference method is solely a property of the preference method itself. Thus,
determinism is controlled by the logic implemented in the extensible FlexPref plugin
functions.

7.5.2. Nondeterministic Answers. FlexPref supports the ability to produce nondetermin-
istic preference answers, as long as all nondeterministic of the preference method
can be encapsulated in the extensible plugin functions. In other words, a preference
method cannot base its nondeterministic behavior on functionality outside of FlexPref,
e.g., tuple orders produced by other DBMS operators feeding the FlexPref operators.

8. CASE STUDIES

In this section, we demonstrate the extensibility and usefulness of FlexPref by pro-
viding case studies for injecting seven state-of-the-art preference evaluation meth-
ods introduced in Section 3.2.2. We chose these case studies carefully to cover
a wide spectrum of preference methods. In particular, skyline represents transi-
tive dominance-based preference methods, k-dominance and e¢-dominance represent
non-transitive dominance-based preference methods, top-k represents ranking-based
preference methods, top-k dominating and k-representative skyline represent prefer-
ence methods that combine ranking-based and dominance-based preferences, and k-
frequency represents methods that propose object rankings that do not require a spe-
cific function, but base their scoring on inherent properties of an object (e.g., attribute
correlation and subspace search).

For each preference method, we first describe its functionality. We then cover the
implementation of the general functions described in Section 4, and the query opti-
mization functions described in Section 6. Finally, we give illustrative examples, using
the data in Figure 5, for single table, multi-table, and sorted list access. Unless oth-
erwise mentioned, the examples assume the MIN preference over numeric attributes.
The details in this section are summarized in the online appendix.

8.1. Case Study 1: Skylines

Given a dataset D, the objective of skyline preference evaluation [Borzsonyi et al. 2001]
is to find the set of objects S that are not dominated by any other object in D. An object
P is said to dominate an object @ if P is better than or equal to) in all dimensions,
and strictly better than () in at least one dimension. For example, in Figure 5(a) object
a dominates object e as it is better (i.e., less) in all three dimensions.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:25

Skyline
(@,1),(c,1)

Top-K Dominating R
(a,3), (b,2)
K-Dominance
(a,1)
K-Frequency
(@,1), (¢,3)
Top-K
(a,3.3), (b,3.5)
Epsilon Dominance
¢,1

[
=3
<
5]
=
<«
=
=
o
=
-3
=

d1
5
7
8
10
12
13

o
1~

ale ||~
"

o
slofofw

olalo|e|> (B
9

N
S NS ES
wlslw|w

wloo|w|sluls]w|F]w

ale|o|e|=]=]=]|~ B
||| |n|w] &

o |afo =]~ |5

o= e[~ |=[B

] [PN P9 1
o |=|afefe|=[B
—|= a
Slzle]e|e|s

s
K-Representative Skyline
(@,3), (c,1)

(a) Single-table example (b) Join data (c) Sorted lists

o

8 13

Fig. 5. Case study example data

8.1.1. General Function Implementation. A skyline implementation in FlexPref is given
below.
Macros

(1) Default Score: Skyline evaluation does not rank objects. Thus, within our frame-
work, the skyline score of an object P is binary and is set to one if P is not dom-
inated, and zero otherwise. Initially, each object is assumed to be a skyline, thus,
each object has a default score of one.

(2) IsTransitive: Returns true; the skyline method exhibits the transitive property.

Evaluation functions

(1) PairwiseCompare: Change the score of P to zero only if it is dominated by @, and
return the appropriate value (i.e., 1, 0, or -1) based on the dominance relation
between P and @, i.e., if P is dominated it cannot be a preferred object, and vice
versa. (’s score is not updated in PairwiseCompare per the function definition given
in Section 4.

(2) IsPreferredObject: This function does not need the reference set S to determine if
P is a preferred object. Instead, we return ¢rue if the score of P is one, i.e., P was
not dominated by any object.

(3) AddPreferredToSet: Append P to the end of set S, and remove any non-skyline ob-
jectsin S.

(4) stopSortedEval: The skyline stopping condition can be based on previous research in
distributed skyline query processing [Balke et al. 2004]. This condition is: stop once
there is a complete object () in set P. At this stopping point, the complete object () is
equal to, or dominates, the virtual object O. Furthermore, any new object added to
P cannot be better than O, thus only objects currently in P are skyline candidates.

Optimization functions

(1) EstimateCardinality: Much previous work has addressed cardinality estimation for
the skyline preference method [Chaudhuri et al. 2006; Godfrey 2004; Zhang et al.
2009]. Any of these methods can be used within this function.

(2) selectionCommute: Skyline commutability with selection is conditional upon the se-
lection predicate. Let C,(t) represent a selection condition over a tuple ¢; also, let
Cs(p,q) represent the given preference criteria that specify whether tuple p is pre-
ferred over tuple ¢ (e.g., MIN price and MIN distance). It has been shown that the
following condition must hold in order for selection to commute with skyline, which
can be verified in quadratic time [Chomicki 2003].

Vp,q[(C1(q) A Ca(p,q)) = Ci(p)]

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:26 Justin Levandoski et al.

That is, the selection condition over a “non-preferred” tuple ¢, logically combined
with an AND condition with the preference conditions must imply the selection
condition over the preferred tuple p.

(8) JoinDistribute: Skyline can distribute over a Cartesian product (i.e., when
J=¢) [Chomicki 2003]. Furthermore, skyline will distribute over an equijoin when
the preference objectives in P apply to attributes in only one of the join input re-
lations (e.g, Fop(R Xy S) = Fop,(R) X7 S). However, skyline will not distribute
over an equijoin in the general case when P applies to attributes in both input
relations [Jin et al. 2007; Jin et al. 2010].

8.1.2. Preference Evaluation Example. Single Table Execution. Consider the three-
dimensional data in Figure 5(a). First, object a is read, given a default score of
1, and compared pairwise with all other objects using PairwiseCompare. Function
PairwiseCompare returns -1 when a is compared with object b, 0 when compared to c,
and -1 when compared to d and e. Thus, b, d, and e are discarded from the data set.
Since a is not dominated, function PairwiseCompare does not change a’s score to 0. Thus,
IsPreferredObject reports that a can be added to the preference answer. Object c is
then read and also found to be a preferred answer (as it is not dominated by «a, the only
object left in the data set). After processing ¢, no objects are left in the data set and
execution terminates. Objects a and c exist in the preference set, each with a score of
one, as given in the skyline answer in Figure 5(a).

Multi-Table Execution. In Figure 5(b), pruning removes tuples (a,5,5) and (b,8,8)
from table S prior to the join. These tuples are not skylines within their join-key
groups. Furthermore, these tuples cannot possibly be skylines when joined with their
corresponding tuples (a,5,5) and (,7,2) in table R. For example, joined tuple (a,5,3,5,5)
will at least be dominated by members of its same join group: both (a,5,5,3,4) and
(a,5,5,4,3). Similarly, joined tuple (b,7,2,8,8) would be dominated by both (b,7,2,4,2) and
(b,5,5,4,3).

Sorted Table Access. Round-robin processing can stop after five reads for the data
in Figure 5(c). At this point, set P contains objects (a,5,3,3) and (,7,2,_), while object O
equals (7,3,3) and object F' equals (5,2,3). Clearly, any new object added to P cannot be
better than virtual object O due to sorted access, and any new object added to P will
be dominated by the complete object a.

8.2. Case Study 2: Top-K Dominating

Given a data set D, the objective of top-k dominating preference evaluation [Yiu and
Mamoulis 2007] is to score each object P by its dominance power, i.e., the number of
objects it dominates. Here, the dominance definition is the same as the skyline method.
The preference answer contains the k objects with the highest score (i.e., the objects
that dominate the most other objects). As an example, consider objects a and ¢ in Fig-
ure 5(a). Object a has a score of three, as it dominates objects b, d, and e. Object ¢ has
a score of one as it only dominates e. Object preference is based solely on dominance
power, thus non-skyline objects can be preference answers.

8.2.1. General Function Implementation. A top-k dominating implementation in FlexPref
is given below.
Macros

(1) pefault Score: Each object is given a default score of zero.
(2) IsTranmsitive: Returns true.

Evaluation functions

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:27

(1) PairwiseCompare: When it is found that P dominates an object @, it increments P’s
score by one. An object can never be ruled out of the preference answer using pair-
wise comparison, since P’s score must be calculated through comparison with all
objects, thus this function always returns zero.

(2) IsPreferredObject: Returns true if P has a score superior to any of the current %
objects in S, or if S contains less than £ objects.

(3) AddPreferredToSet: Adds P in sorted order in S, removing the old k" object if appli-
cable.

(4) StopSortedEval: One stopping condition can be stop once there are k complete objects
in set P. While it is possible that some incomplete objects in P will be superior to
the complete & objects, this stopping condition at least ensures that the complete
k objects dominate any objects not yet added to P. The unseen objects are equal-to
or dominated by object O, which in turn is equal-to or dominated by each of the k
complete objects.

Optimization functions

(1) EstimateCardinality: The cardinality is k, since top-k£ domination can rank objects
to produce a total order.

(2) SelectionCommute: As discussed in Section 6.3.1, selection does not commute with
top-k domination in any case.

(3) JoinDistribute: As discussed in Section 6.3.2, given the semantics preference meth-
ods designed to return k results, top-k domination does not distribute over a Carte-
sian product, nor equijoins (which is semantically selection over a Cartesian prod-
uct).

8.2.2. Preference Evaluation. The top-k domination answer is given in Figure 5(a) as-
suming k£ = 2. In Figure 5(b), top-k domination pruning removes from S tuples (a,5,5)
and (b,8,8) both with scores of zero. These pruned tuples are not in the top-2 in their
local join-key groups. Meanwhile, sorted round-robin processing can stop after nine
reads for the data in Figure 5(c). At this point, set P contains objects (a,5,3,3), (b,7,2,4),
(c,8,.,3), and (d,_4,.), while objects O equals (8,4,4) and object F' equals (5,2,3).

8.3. Case Study 3: K-Dominance

Given a data set D and a value k, k-dominance preference evaluation [Chan et al.
2006a] finds the set of objects S that are not k-dominated by any other object in D. k-
dominant queries are similar in spirit to skyline queries, except for the relaxed notion
of dominance: an n-dimensional object P is allowed to dominate another object) on
any k < n dimensions. When k = n, a k-dominant query reverts to a skyline query. As
an example, consider objects ¢ and ¢ in Figure 5(a). For k£ = 2, object a k-dominates
object ¢ since a is better in dimensions d1 and d3 (less is better). However, when k = 3
neither object dominates the other as in the case of skylines.

8.3.1. General Function Implementation. A k-dominance implementation in FlexPref is
given below.
Macros

(1) Default Score: As k-dominance does not rank objects, each object can either have a
score of one if it is not k-dominated, zero otherwise

(2) IsTransitive: Returns false, as k-dominance is not transitive as circular dominance
is possible: an object x can k-dominate an object y, y can k-dominate an object z,
and z can k-dominate x.

Evaluation functions

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:28 Justin Levandoski et al.

o)

(2)

3
4)

PairwiseCompare: The function PairwiseCompare changes the score of P to zero only
if it is k-dominated by (), and returns the appropriate value based on dominance
relation between P and Q.

IsPreferredObject: Returns true if P’s score is 1 (i.e., P is not k-dominated), O oth-
erwise.

AddPreferredToSet: Appends P to the end of set S.

StopSortedEval: A stopping condition is stop once set P contains an object (Q with at
most k — 1 incomplete dimensions, and @) k-dominates virtual object O, and O does
not k-dominate QQ (where the value oo is substituted for the incomplete dimensions
of Q). Having an object) with at most k£ — 1 incomplete dimensions ensures that it
cannot be k-dominated on these incomplete dimensions by an object not yet added
to P. Furthermore, since (Q k-dominates virtual object O, but O does not k-dominate
@, then any object not yet added to P is guaranteed to be k-dominated by Q. Thus
the k-dominant answer candidates must exist in P. We note that for multi-table
execution, where tables R and S have contain dr and ds dimensions each, pruning
computes the dgr and ds-dominant answer, and then the £-dominant answer in the
final (i.e., root) preference evaluation.

Optimization functions

o)

(2)

(3

EstimateCardinality: There has been no work exploring cardinality estimation of
the k-dominance preference method, and providing an in-depth cardinality es-
timate is outside the scope of this paper. However, for any value of k, we can
find an upper bound estimate by employing skyline cardinality techniques (e.g.,
see [Chaudhuri et al. 2006; Zhang et al. 2009]).

SelectionCommute: Given a d-dimensional dataset, when k=d, k-dominance will com-
mute under the same condition as the skyline method, as they are equivalent
in this case. When k£ < d, selection does not commute with k-dominance, as
selection performed before preference evaluation may filter objects that can k-
dominate objects that qualify for selection. As an example, consider the case of
2-dominance for a datset D with schema (id,d;,ds,d3) and three objects (a,2,3,6),
(b,3,2,6), and (c,1,4,2). Given the selection condition dy < 4, which is “legal” in the
case of a skyline, performing Fop(04,<4(D)) will produce {a,b} as an answer, while
od,<4(Fop(D)) produces {¢} as an answer. In this case pushing selection filtered
the key object ¢ that 2-dominates both a and b.

JoinDistribute: Given a two join relations R and S with Az number or attributes
in R and Ag number of attributes in S, k-dominance has the same join distribution
properties as a skyline when k=Ar+As. However, k-dominance does not distribute
over a Cartesian product (and hence join) when k <(Ar + Ag). We consider three
cases: (1) Ar < k and Ag < k. Pushing preference evaluation before the join will
produce skyline objects as input to the Cartesian product. Per skyline distribution
rules, the resulting Cartesian product is also a skyline. However, we can construct
an example where the result is not k-dominant. Consider the case where k = 5 and
R={(1,1,1,1)} and S={(1,2,1,2),(2,1,2,1)} (all three objects are skylines). However,
neither tuple in the Cartesian product (1,1,1,1,1,2,1,2) and (1,1,1,1,2,1,2,1) is 5-
dominant. (2) Ar > k and Ags > k. We can again construct a case where the output
is not k-dominant. Consider the previous example from the first case for £ = 3.
Both inputs R and S are 3-dominant, but neither object in the Cartesian product
is 3-dominant. (3) Ar > k and Ag < k (or vice versa). The exact same argument for
case 2 applies to this case.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:29

8.3.2. Preference Evaluation Example. The k-dominance answer is given in Figure 5(a)
assuming k = 2. In Figure 5(b), pruning will remove from table S tuples (a,5,5) and
(b,8,8), as they are k-dominated within their join-key groups. Similarly, round-robin
processing can stop after five reads for the data in Figure 5(c), where set P contains
objects (a,5,3,3) and (b,7,2,_) while object O equals (7,3,3) and object F' equals (5,2,3).

8.4. Case Study 4: K-Frequency

Given a data set D, k-frequency preference evaluation [Chan et al. 2006b] scores each
object P by its dominated subspaces: the number of possible sub-dimensions in which
P is dominated. The preference answer contains the %k objects with the lowest score
(i.e., the objects that are dominated in the least number of possible sub-dimensions).
As an example, object ¢ in Figure 5(a) has a score of one, since it can only be dominated
in a single sub-dimension (d2 by object ¢). Meanwhile, object ¢ has a score of 7, since it
is dominated in all possible sub-dimensions by object a (i.e., {d1}, {d2}, {d3}, {d1,d2},
{d1,d3}, {d2,d3}, {d1,d2,d3}).

8.4.1. General Function Implementation. A k-frequency implementation in FlexPref is
given below.
Macros

(1) Default Score: Each object is given a default score of zero.
(2) IsTransitive: Returns true.

Evaluation functions

(1) PairwiseCompare: Dominant sub-dimension counting must be performed carefully
for k-frequency. For instance, in Figure 5(a) object c is dominated on overlapping di-
mensions by different objects. That is, ¢ is dominated in sub-dimensions ({d1}, {d3},
{d1,d3}) by object a, and sub-dimension {d3} by object d. Clearly, over-counting
dominated sub-dimensions is an issue. Thus, this function must have access to
an extra data structure that stores the dominated sub-dimensions for each object
P. Tracking these sub-dimensions ensures that an object is scored correctly, i.e.,
distinct sub-dimensions can be extracted and counted. P;.,,. is updated based on
the distinct sub-dimensions where () dominates P. An object can never be ruled
out of the preference answer using pairwise comparison since P’s score must be
calculated through comparison with all objects, thus this function always returns
zZero.

(2) IsPreferredObject: Returns true if P has a score superior to any of the current %
objects in S or if S contains less than & objects.

(3) AddPreferredToSet: Adds P in sorted order in S, possibly removing the old k*" object.

(4) stopSortedEval: Uses the same stopping condition as skylines. This condition guar-
antees that an interesting set of objects exists in P, as any object not yet added
to P is guaranteed to be equal-to or dominated by the complete object Q. Thus,
any object not in P is guaranteed to be dominated in all possible sub-dimensions,
meaning that all unseen objects will have the same score. If there are not yet k
objects in P when the stopping condition is met, then any arbitrary objects can be
added to P as they have the same score.

Optimization functions

(1) EstimateCardinality: The cardinality is k, since k-frequency can produce exactly k
answers based on ranking objects in total order.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:30 Justin Levandoski et al.

(2) selectionCommute: k-frequency does not commute with selection, as it ranks objects
based on counting dominant subspaces against all other objects in the data set.
The basic argument is the same as that of top-k£ domination.

(8) JoinCommute: As discussed in Section 6.3.2, given the semantics preference meth-
ods designed to return k results, k-frequency does not distribute over a Cartesian
product, nor equijoins.

8.4.2. Preference Evaluation. The k-frequency answer is given in Figure 5(a) assuming
k = 2. In Figure 5(b), k-frequency pruning will remove from table S tuples (a,5,5) and
(b,8,8), as they both have local scores of three, i.e., they are dominated in all possible
subspaces. Round-robin processing can stop after five reads for the data in Figure 5(c).
At this point, P contains objects (a,5,3,3) and (,7,2,.), while object O equals (7,3,3) and
object F' equals (5,2,3).

8.5. Case Study 5: Top-K

Given a set of data D, top-k preference evaluation [Chaudhuri and Gravano 1999]
scores each data object P using a monotonic ranking function f. The preference answer
contains the % objects with the minimum score. A monotone function f takes as input
multiple attribute values of an object P and returns a single real number as its score.
For example, for object a in Figure 5(a) and a monotone function f =(1l0 *(d14-d2)+ % *d3),
a’s score is 3.3.

8.5.1. General Function Implementation. A top-k implementation in FlexPref is given be-
low.
Macros

(1) pefault Score: Each object has a default score of zero.
(2) 1sTransitive: Returns true.

Evaluation functions

(1) PairwiseCompare: Top-k does not rely on pairwise comparison since an object’s score
is determined using only its own attributes. Thus, this function returns -2 by de-
fault.

(2) 1sPreferredObject: Computes object P’s score using a monotonic ranking function
f, and returns true if P has a score superior to any of the current % objects in S, or
if S contains less than k objects.

(3) AddPreferredToSet: Adds P in sorted order in S, removing the old k" object if appli-
cable.

(4) stopSortedEval: A possible stopping condition is based on previous research that
defines threshold score for efficient top-k joins over sorted lists [Ilyas et al. 2003].
Specifically, the condition is: stop once there are k complete objects in P that
have scores less than or equal-to a given threshold value T. Threshold T is a
lower-bound on the scores of any object not seen so far in set P, defined as
MIN(f(OI[1],FI2], - - ,F[n]), f(F[1],0[2], - - ,F[n]), f(F[1],F[2],---,0O[n])). That is, the
minimum of the scores taken from combining the last value seen from each input
with the first values read from every other input.

Optimization functions

(1) EstimateCardinality: The cardinality is k, since top-£ can produce exactly k£ answers
based on ranking objects in total order.

(2) selectionCommute: From the extensive previous work in top-k processing, it is se-
mantically correct for top-k to commute with selection [Li et al. 2005].

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:31

(8) JoinCommute: As discussed in Section 6.3.2, given the semantics preference methods
designed to return k results, top-k does not distribute over a Cartesian product,
nor equijoins.

8.5.2. Preference Evaluation. The top-k answer is given in Figure 5(a) for k = 2, where
we aim to minimize scores based on a ranking function that sums all attribute values.
In Figure 5(b), pruning removes from .S tuples (a,5,5) and (,8,8) with scores 10 and 16,
respectively. These pruned tuples are not in the top-2 in their join-key groups. Round-
robin processing can stop after 12 reads for the data in Figure 5(c). At this point,
set P contains (a,5,3,3), (b,7,2,4), (¢,8,5,3), (d,10,4,11), while 0O=(10,5,11), F'=(5,2,3), and
threshold 7" = 13.

8.6. Case Study 6: Epsilon Dominance

The epsilon-dominance (abbr. e-dominance) preference method [Xia et al. 2008] alters
the concept of traditional skyline dominance to be more flexible. The idea is to increase
or decrease the dominance region of each object in the dataset by a constant €¢!. For-
mally, given two d dimensional points p and ¢, with a set of weights on each dimension
W={w;|i € [1,d],0 < w; < 1}, p e-dominates ¢ if Vi € [1,d], p[i] - w; < q[i] - w; + €
and 35 € [1,d], p[j] < ¢[j], assuming less is better. The e-dominant answer is given in
Figure 5, assuming w;=0.5, wy=w3=1, and ¢=1.5. In this case, ¢ is the only preference
answer, which differs from a traditional skyline answer of {a,c}, since ¢ e-dominates a.

8.6.1. General Function Implementation. A e-dominance implementation in FlexPref is
given below.
Macros

(1) Default Score: Each object has a default score of one.
(2) IsTransitive: If € > 0, return false. In this case, e-dominance loses the transitive
property. Otherwise, if € < 0, return ¢rue.

Evaluation functions

(1) PairwiseCompare: If P e-dominates @, return 1. If) e-dominates P, set the score of
P to zero, and return -1. Else, return 0.

(2) IsPreferredObject: Return true if the score of P is one. Otherwise return false.

(3) AddPreferredToSet: Append P to the end of set S.

(4) stopSortedEval: If ¢ < 0, we can use the standard skyline stop condition stop once
there is a complete object @ in set P. If ¢ > 0, a stopping condition is stop once there
is a complete point @ in P that is not e-dominated by virtual point O. With this
condition, we can be certain that any incomplete points will not be dominated by
any unseen objects, since the complete point Q is at least as good as any incomplete
object (i.e., it is better than O).

Optimization functions

(1) EstimateCardinality: For the average case, e-dominant cardinality can be estimated
by employing skyline cardinality techniques (e.g., see [Chaudhuri et al. 2006;
Zhang et al. 2009]). However, refining this estimation for varying values of ¢ re-
mains as future work.

(2) SelectionCommute: e-dominance shares similar semantics to skyline when ¢ < 0. In
this case it shares the same selection commutability rules with skyline. However,

Le-dominance is a specific instance of skylines using the more general “substitutable value” (or S-V) prefer-
ence semantics proposed in [KieBling 2005], where ¢ is similar to the d-value of S-V Semantics

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:32 Justin Levandoski et al.

when ¢ > 0, selection does not commute with e-dominance. As e-dominance is non-
transitive in this case, the proof is the same as that made for k-dominance, i.e., we
can construct a case where a filtered tuple dominates a non-filtered tuple during
preference evaluation.

(3) JoinDistribute: For any value of ¢, the e-dominance method shares the same join
distribution rules as skyline. This rule holds as the dominance definition for both
methods relies on independent pairwise comparability in every dimension between
two objects. For the case of Cartesian product, performing preference evaluation
before the join will guarantee that joined objects are part of the preference answer,
as each object’s dimensions are compared independent of one another. For the case
of equijoin, the same non-distribution for skyline applies to e-dominance.

8.6.2. Preference Evaluation Example. For these e-dominance examples, we assuming
w1=0.5, we=w3=1, and e=1.5. For single-table evaluation, the ¢-dominant answer is
given in Figure 5. In Figure 5(b), e-dominance pruning removes from S tuples (a,3,4),
(a,4,3), (a,5,5), and (b,8,8). These pruned tuples are all e-dominated within their join-
key groups. Sorted round-robin processing can stop after five reads for the data in Fig-
ure 5(c). At this point set P contains objects (a,5,3,3) and (b,7,2_), while object O equals
(7,3,3) and F equals (5,2,3). The complete object (a,5,3,3) cannot be e-dominated by O.

8.7. Case Study 7: k-Representative Skyline

The k-representative skyline [Lin et al. 2007] is based on the same dominance prop-
erty of the traditional skyline method, except each object in the preference answer is
ranked by the number of objects it dominates. Thus, a total ordering of skyline objects
is achieved. As an example, the k-representative skyline preference answer is given in
Figure 5, where object a is the top-ranked object with a score of 3, since it dominates
objects b, d, and e. Meanwhile, object ¢ is ranked after a with a score of 1, since it only
dominates object e.

8.7.1. General Function Implementation. A k-representative skyline implementation in
FlexPref is given below.
Macros

(1) pefault Score: The default score of an object is zero.
(2) IsTramsitive: Returns true.

Evaluation functions

(1) PairwiseCompare: If P dominates @), increase the score of P by one. This function
always returns 0, as an object’s rank requires pairwise comparison to every other
object in the data set.

(2) 1sPreferredObject: Compare P to objectin S, if P is a skyline return true. Otherwise,
return false.

(3) AddpreferredToSet: Add P to S in sorted order by the score of P; also remove any
non-skyline objects from S.

(4) stopSortedEval: The stopping case for k-representative skyline is the same as the
standard skyline method.

Optimization functions

(1) EstimateCardinality: If the size of the skyline is greater than or equal to %, the
k-representative skyline can produce exactly & answers based on the total order
ranking of the skyline. Otherwise, cardinality can be estimated using existing es-
timation techniques for skyline.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:33

(2) selectionCommute: As the k-representative skyline has the same semantics as the
skyline, the selection commutability rules are the same as skyline.

(8) JoinDistribution: The same join distribution rules for skyline apply to the k-
representative skyline.

8.7.2. Preference Evaluation Example. For these examples, we assume k=2, i.e., we
want the top-2 representative skyline objects. For single-table evaluation, the k-
representative skyline answer is given in Figure 5. In Figure 5(b),pruning removes
from S tuples (a,5,5), and (0,8,8), as these tuples can never contribute to the top-2 rep-
resentative skyline when joined with any counterpart tuple. Sorted round-robin pro-
cessing can stop after five reads for the data in Figure 5(c). At this point set P contains
objects (a,5,3,3) and (b,7,2_), while object O equals (7,3,3) and I’ equals (5,2,3).

9. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance of FlexPref. Our experi-
ments involve the following implementations: (1) The skyline, k-dominance, and top-%
preference evaluation methods implemented in FlexPref according to the function def-
initions given in Section 8. These implementations are denoted Flexsxy, Flexxpoar,
and Flexy, respectively?. (2) The custom implementations of the skyline block nested
loop operator (Custsky) [Borzsonyi et al. 2001], the sort-first-skyline (Custsxy _srs)
with an added elimination filter step), and the two-scan K-dominance algorithm
(Custgponr) [Chan et al. 2006a]. We also implemented the custom multi-relational
skyline join operator (JCustsky) [Jin et al. 2007] in order to fairly evaluate our multi-
relational preference execution framework. These custom implementations make for
the fairest comparison against our framework as they do not assume sorted or indexed
data. We note that for the case of top-%, no custom implementation exists that assumes
completely unsorted/unranked input [Ilyas et al. 2008]. An exception to this claim is
the case involving sorted list access, which we discuss in Section 9.2. Our experiments
evaluate four main aspects of FlexPref: (1) multi-table access (Section 9.1), (2) sorted
list access (Section 9.2), (3) single table access (Section 9.3), and (4) query optimization
(Section 9.4).

All approaches are implemented in the query processor of the PostgreSQL 8.3.5
open-source database [PostgreSQL]. The experiment machine is an Intel Core2 8400
at 3Ghz with 4GB of RAM running Ubuntu Linux 8.04. We use the generator speci-
fied in [Borzsonyi et al. 2001] to generate synthetic data sets for all experiments. Un-
less otherwise mentioned, the data contain six integer attributes, where the attribute
values are generated independent of one another. We experiment with data set sizes
ranging from 10K to 3M tuples. The value of k for the k-dominance preference is set at
4. For the top-k method, the default number of answers (k) is set to 20. As mentioned
in Section 3.2.1, the k in k-dominance is different than that used for top-%£. The k in
top-k refers to the number of desired answers, while the %k in k-dominance represents
the number of dimensions to use when evaluating dominance. Our performance metric
is the elapsed time reported by the PostgreSQL EXPLAIN ANALYZE command.

9.1. Multi-Table Join Query
In these experiments, we study the impact of the FlexPref multi-table preference eval-
uation framework that prunes join input tuples, and then compare the FlexPref imple-
mentations to Custsxy, Custsxy _srs, and Custxpoas, as well as the custom skyline
join algorithm JCustsky. The general SQL signature for this query is:

Select * From T1, T2 WHERE T1.id=T2.id

2We implemented all methods from Section 8, but omit results as the general trend is similar

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:34 Justin Levandoski et al.

2
a
3

2

0 6
Flexgry —@— Flex —@— JFlex, e A JFlex, Py
90 | JFlexgey A ® 14| JFlex]x 4 35| Custany A A7F 12 Custeoon A 4
g 12 30 [JCustsy —©O 10 ~
g 70 T1o T g5 | CUStskv-srs + T
8 % 8 & ~ 8 IS
2 50 s 8 o 20 / ' &
E 40 Eg E1s & E
F 30 F F F o, o
2 4 10 ~ ~
5 AR A4 2 &
12 S hr A A A A gLA A A b Ao ué‘"“t*‘%k‘f‘o OLAAA.AAAAA A
10:10 30:30 50:50 70:70 90:90 10:10 30:30 50550 70:70 90:90 10:10 30:30 5050 70:70 90:90 10:10 30:30 50550 70:70 90:90
Join Ratio Join Ratio Join Ratio Join Ratio
(a) Sky (b) Top-K (¢) Sky (vs Custom) (d) K-Dom (vs Custom)

Fig. 6. Multi-table FlexPref join

Preferring T1.d1 AND T1.d2 AND T1.d3
AND T2.d1 AND T2.d2 AND T2.d3

We omit the using clause as multiple preference methods are tested. The join is an
m:m binary join where tables T1 and T2 contain three-attribute tuples, plus an id,
while preference is evaluated over all six attributes. Each table contains 1K unique
ids, with an equal number of tuples assigned to each join-key group. We increase the
size of each table from 10K to 100K that increases the join ratio from 10:10 to 100:100,
as well as the join result cardinality.

9.1.1. Effect of Pruning. This experiment studies the effect of pruning join inputs in
FlexPref’s multi-table execution. We study the skyline, and top-k implementations in
FlexPref using the naive join approach (abbr. Flexsxy, and Flexrx) against the op-
timized pruned approach (abbr. JFlexsxy and JFlexrg). For space purposes, we do
not discuss the k-dominance implementation, however, it exhibits similar behavior to
the skyline case. Figures 6(a) and 6(b) provide the runtimes for the skyline and top-%
methods, respectively. Clearly, pruning is beneficial to the FlexPref framework, keep-
ing preference evaluation scalable for multi-table queries. For the skyline method, tu-
ples are pruned throughout the progression of join ratios, reducing the workload of
the join and final post-join preference evaluation. For the case of top-k (with default
k = 20), pruning takes effect after the 20:20 ratio. For smaller ratios, no join input tu-
ples can be pruned as join-key groups contain less than 20 tuples, thus pruning causes
an overhead for these cases.

9.1.2. Comparison With Custom Algorithms. Given that pruning in FlexPref is benefi-
cial to multi-table preference queries, we now compare the optimized skyline and k-
dominance FlexPref implementations, JFlexsxy and JFlexxpoar, against Custsky,
Custsky_srs, and Custxpons that must perform preference evaluation after the join
(i.e., on-top of the query plan). We also compare FlexPref against the specialized sky-
line join operator [Jin et al. 2007], JCustsxy). Figures 6(c) and 6(d) give the run-
times for skyline and k-dominance methods, respectively. These results clearly high-
light the advantages of FlexPref. The optimized FlexPref implementations exhibit scal-
able behavior as the join ratio (and data size) increases. FlexPref is superior to the
Custsky, Custskxy_srs, and Custix poys methods that represent an on-top approach
for the multi-table case. Custsxy, Custsxy_srsg, and Custxpoys cannot reduce the
input to the join, thus must process the complete join result. Interestingly, JFlexsy
exhibits comparable performance to the custom skyline join JCustsxy. These results
are promising, and show that (1) FlexPref'is clearly advantageous for arbitrary DBMS
queries compared to an outside (or on-top) and (2) competitive with specialized ap-
proaches for more sophisticated queries.

We do not compare our JFlexx poys method against a custom k-dominance join al-
gorithm, as none exist. The only possible implementation for k-dominance in the case
of arbitrary multi-relational queries is to perform evaluation on-top of the query plan.
This fact highlights the strength of FlexPref. Once registered with FlexPref, any pref-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:35

90 JFlexggy —A— [€] 35 JFlexry, —A—
80 I SLFlexgy ¥ . 30 [SLFLexp %
70 JCustgyy O
~25
8
®20
x 215
F10
sk
° z oK
500K 1M 15M 2M 25M 3M 500K 1M 1.5M 2M 25M 3M
Data Size Data Size
(a) Skyline (b) Top-K

Fig. 7. Sorted list access

erence method gains the advantages of being coupled with non-trivial database opera-
tions. This experiment highlights the efficiency gains by taking the general extensible
approach of FlexPref.

9.2. Sorted List Access

This experiment studies the efficiency of the general sorted access preference evalu-
ation algorithm outlined in Section 5.3 for the skyline and top-k£ methods. For space
purposes, we do not plot the k-dominance experiment, however, it exhibits similar be-
havior to the skyline case. The signature for this query is:

Select * From T1,...,T6
Where T1.id=T2.id=T3.1id=T4.id=T5.id=T6.id
Preferring T1.d AND ... AND T6.d

We again omit the using clause as multiple preference methods are tested. The join
is 1:1 that combines six 2-ary tables T1-T6, each with a primary key id and attribute
d; all tables are sorted on d. We compare the FlexPref optimized join implementation
(JFlexs iy and JFlexrx) to the FlexPref sorted list implementation for the skyline and
top-k methods (SLFlexsky and SLFlex7 k). For the skyline case, we also compare with
JCustsky. We do not implement a custom join algorithm for top-%, as the FlexPref top-
k sorted list implementation actually reduces to an m-way version of the custom join
specified in [Ilyas et al. 2003]. Figure 7 gives the runtimes for both skyline and top-k
as the table sizes increase from 500K to 3M tuples. The results confirm the efficiency of
the general sorted list access framework of FlexPref. As input size increases, the sorted
list method makes use of the stopping condition in order to end I/O earlier during
processing. Of course, The FlexPref join framework must read every input tuple in
order to perform the full join. Interestingly, the custom skyline join JCustgxy shows
poorer performance than both FlexPref implementations. This poor performance is due
to JCustsky needing to materialize every intermediate join result in the query tree in
order to find a global skyline for the input to the subsequent join.

9.3. Single-Table Access

This experiment studies the performance of the skyline and k-dominance preference
implementations for a single table access query. The query signature is:

Select * From T
Preferring T.d1 AND ... AND T.d6

Figures 8(a) and 8(b) give the runtimes for the skyline and k-dominance meth-
ods, respectively, as the table cardinality is increased from 500K to 3M tu-
ples. Both the FlexPref skyline and k-dominance implementations (Flexsyxy and
Flexx ponr) show inferior performance to their counterpart custom implementations
(Custsky, Custsxy_srs, and Custxpons). Implemented as user-defined functions,
both Custsky, Custsxy_srs, and Custi poys resemble a specialized approach for this
experiment as they are designed to read data from a single, unsorted table. As ex-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:36 Justin Levandoski et al.

Flexgxyy —@—

Flexypom —@—
Custgyy &

Custpoy 4

_ 8 ICustsyy.srs -+ »
g g
2 2 A
ga g
g p s A E2

2 N + 1

B
0
500K 1M 1.5M 2M 25M 3M 500K 1M 1.5M 2Mm 25M 3M
Data Size Data Size
(a) Skyline (b) K-Dominance

Fig. 8. Single-table preference evaluation

pected, Custsxy _srs shows superior performance the generic BNL implementation
of Custsky as reported in previous work [Chomicki et al. 2003; Godfrey et al. 2005].
We emphasize that it is not the objective of FlexPref to win over these very specialized
implementations for this case of single table access. The power of FlexPref appears
in: (a) its support for optimizing more sophisticated queries, as we studied in previ-
ous experiments, where any preference method in FlexPref is coupled with non-trivial
database operations, and (b) its practical approach to implementing a wide array of
preference evaluation methods, which would require a great amount of effort with-
out FlexPref. Regardless, Flexsxy and Flexxpoas display linear behavior similar to
Custggy and Custxpous, as the FlexPref single-table access algorithm cuts its inner
loop immediately when an outer object is found to be dominated, thus staying compet-
itive with the customized algorithms [Borzsonyi et al. 2001; Chan et al. 2006a].

9.4. FlexPref Query Optimization

This experiment studies the efficiency gains when FlexPref operators can be optimized
alongside existing relational operators. Specifically, we investigate performance gains
when the selection (Section 9.4.1) and projection (Section 9.4.2) operator can be pushed
completely below the single-table FlexPref operator.

9.4.1. Pushing Selection. In this experiment, we study the performance gain when the
selection operator can be pushed below the single-table FlexPref operator. The general
SQL signature is:

Select * From T

Preferring T.d1 AND ... AND T.d6
Using Skyline

Where T.d1 < X

The variable X allows for various selectivity ratios. These experiments use the skyline
implementation due to its ability to commute with selection (Section 8.1).

Figure 9(a) plots the runtimes for the skyline method as the table cardinality in-
creases from 500K to 3M tuples when the selectivity is set to 10%. When selection
is pushed below FlexPref (labeled Flexsxky_ pusn), we see approximately a factor of
seven speedup for all data sizes when compared to the case when selection is per-
formed after preference evaluation (labeled Flexsxy nopusn). This performance gain
is due selection filtering a large number of tuples before reaching the more expensive
FlexPref operator. Figure 9(b) plots the same query for a selectivity of 30%. Even with
this higher selectivity ratio, we see approximately a speedup of four when selection is
pushed below the FlexPref operator.

9.4.2. Pushing Projection. This experiment studies the performance improvement when
the projection operator can be pushed below the single-table FlexPref operator. The
general SQL signature is:

Select T.d1, T.d2, T.d3From T

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:37

. FleXsky.push —@— FleXsky.push —@— A FleXsky.push —@—
8 €XSKY-NoPush A 8 €XSKY-NoPush A 8 €XSKY-NoPush A
&

86 A 8 2
2 2 @
Py VAN Py ©
E 4 & £ £
S S =

2

44.~’~Q~’”.’#'.’-ﬂ
: 0 0
500K 1M 1.5M 2M 25M 3M 500K 1M 15M 2M 25M 3M 500K 1M 15M 2M 25M 3M
Data Size Data Size Data Size
(a) 10% Selectivity (b) 30% Selectivity (¢) Projection (50% of attributes)
Fig. 9. Query optimization experiments
Preferring T.d1 AND ... AND T.d3

Using Skyline

For this query, the projection operator removes half of the attributes from the default
six-attribute tuples in table T (i.e., T.d4, T.d5, T.d6). This query is legal according to
the rules for commuting projection with the FlexPref operator as discussed in Sec-
tion 6.3.3, as none of the attributes removed by projection take part in preference eval-
uation. Figure 9(c) provides the query performance numbers when projection is pushed
below FlexPref operator implementing the skyline method (labeled Flexsxy — pusn) and
when projection is done after the FlexPref operator (labeled Flexsxy - nopusn). Here,
we see a small constant speedup when projection is pushed below the FlexPref opera-
tor. For both query plans, FlexPref must process all tuples in table T. However, for the
Flexsky _ push approach, the tuples processed by FlexPref are 50% smaller, which is
the reason for the better performance.

10. CONCLUSION

This paper presented FlexPref, a general framework for extensible preference evalua-
tion. FlexPref is implemented in the query processor of a database, and supports var-
ious preference evaluation methods. Implementing a new preference method requires
the registration of only three functions that capture its essence. Once integrated, the
preference method “lives” at the core of the database, enabling the efficient execu-
tion of preference queries involving common database operations. We provided the de-
tails of how FlexPref is integrated into three database operations: single-table access
(preference selection), joins, and sorted list access. We provided a query optimization
framework for FlexPref, as well as a theoretical framework that defines the proper-
ties a preference method must exhibit to be implemented in FlexPref. We detailed the
implementation of seven state-of-the-art preference methods within FlexPref. We also
provided experimental evidence that verified the ability of FlexPref to provide efficient
query support for arbitrary preference queries. FlexPref lays the groundwork for fur-
ther generic and extensible support for preference evaluation in databases, including,
but not limited to: uncertainty handling, indexing, and integration with aggregate op-
erators.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:38 Justin Levandoski et al.

4000 Custgyy —4&— A 18 Custypoy —4&— N
3500 | Custsyy.srs —— 16 [JFlexgpom —A—
JﬁféxSKv —A— 14
3000 3
T 2500 g 12
L 2 10
s 2000 '
£ 1500 E g
1000 4
500 2
o A A A A Ao a4 o
10:10 30:30 50:50 70:70 90:90 10:10 30:30 50:50 70:70 90:90
Join Ratio Join Ratio
(a) Sky (vs Custom) (b) K-Dom (vs Custom)

Fig. 10. Three-table join

APPENDIX

This appendix supplements the main body of the paper as follows. Appendix B pro-
vides further experimental evaluation of FlexPref. Appendix C provides a single-page
implementation summary for all of the case studies presented in Section 8.

B. FURTHER EXPERIMENTAL EVALUATION

This section provides further experimental evaluation of FlexPref. We begin by pro-
viding further evidence of FlexPref’s usefulness in multi-table join queries. We then
evaluate FlexPref using data generated using both anti-correlated and correlated data
sets.

B.1. Three-Table Join Query

This experiment expands on the multi-table join query presented in Section 9 by using
a three-table join query to evaluate FlexPref compared to Custsxy, Custsxy _srg, and
Custx poa. The SQL signature for this experiment is:

Select * From T1, T2, T3 WHERE T1.id=T2.id=T3.id
Preferring T1.d1 AND T1.d2 AND T1.d3

AND T2.d1 AND T2.d2 AND T2.d3

AND T3.d1 AND T3.d2 AND T3.d3

Figure 10(a) provides the results for the skyline query. In this case the prune op-
timization of JFlexsxy leads to two orders of magnitude performance speedup over
both Custsxy and Custsxy _srs. Since this is a non-reductive join, the input to both
Custggy and Custsxy_srs explodes as the number of joins increases. The runtime
of both increases by an order of magnitude compared to the two-table join experiment
in Section 9. Since both Custsxy nor Custsiy _srs perform preference evaluation af-
ter the join, they can do nothing to limit the input. Meanwhile, JFlexsxy scales well
with the addition of another join, exhibiting a runtime of 26 seconds in the worst case,
compared to 3710 and 3029 seconds for Custsxy and Custsxy_srs, respectively. Fig-
ure 10(b) plots the results for the k-dominance query. As expected, the overall runtime
for Custx poas is higher than the two-table query. The runtime for JFlexx poas is com-
paratively higher as well, but still exhibits an order of magnitude speedup compared
to Custx pons for higher join ratios.

B.2. Correlated and Anti-Correlated Data

This experiment explores how FlexPref performs when run on data with correlated and
anti-correlated dimensions. For each data set, we re-run the single-table experiment
from Section 9. Figures 11(a) and 11(b) report the results for the correlated data. On a
whole, the algorithms exhibit better (or same) performance than when using indepen-
dent data set in Section 9. The custom implementations still show a general trend of
besting FlexPrefin this setting. As discussed previously, it is not the objective of Flex-
Pref to win against specialized implementations for single-table queries; the previous

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:39

b O Custgy —B— 4
60 {Custsky.srs —+—
FlexSky —@—

Custypom —2—

5 [Custypom —2—
Flexoom —8—

4 [Flexkpom —@— >
35
3 A
25
2

FlexSky —@—

Time (sec)
Time (sec)

@
8

Time (sec)
o
&
Time (sec)
CanvwaG o N®

15 A P 20 15
n.;: /&MM 1 104 L n.;!
° 0 1 2 3 4 5 500K m 1.5M 2m 2.5M 3m o 0 2 3 4 5 gODK m 1.5M 2m 2.5M 3m
Data Size Data Size Data Size Data Size
(a) Sky (Corr) (b) K-Dom (Cor) (¢) Sky (Anti) (d) K-Dom (Anti)

Fig. 11. Single table preference evaluation with correlated and anti-correlated data

join query experiments show that FlexPref is clearly advantageous for more complex
preference queries. Figures 11(c) and 11(d) plot the results for the anti-correlated data.
These results exhibit the same general trend as the previous experiments.

C. IMPLEMENTATION SUMMARY FOR CASE STUDIES

This section provides a compact implementation summary for all case studies pre-
sented in Section 8. Table VI provides this summary; the rows correspond to a prefer-
ence method, while the columns correspond to each pluggable function of the frame-
work.

REFERENCES
Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. 2006. Context-Sensitive Ranking. In SIGMOD. 383—
394.

Rakesh Agrawal and Edward L. Wimmers. 2000. A Framework for Expressing and Combining Preferences.
In SIGMOD. 297-306.

Anastasios Arvanitis and Georgia Koutrika. 2012. Towards Preference-aware Relational Databases. In
ICDE. 426-4317.

Wolf-Tilo Balke and Ulrich Giintzer. 2004. Multi-objective Query Processing for Database Systems. In
VLDB. 936-947.

Wolf-Tilo Balke, Ulrich Giintzer, and Jason Xin Zheng. 2004. Efficient Distributed Skylining for Web Infor-
mation Systems. In EDBT. 597-608.

Don S. Batory. 1986. Extensible Cost Models and Query Optimization in GENESIS. IEEE Data Engineering
Bulletin 9, 4 (1986), 30-36.

Don S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and T. E. Wise. 1988.
GENESIS: An Extensible Database Management System. IEEE Transactions on Software Engineering
14, 11 (1988), 1711-1730.

Don S. Batory and Michael V. Mannino. 1986. Panel on Extensible Database Systems. In SIGMOD. 187-190.
Stephan Borzsonyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Operator. In ICDE. 421-430.

Michael J. Carey and David J. DeWitt. 1987. An Overview of the EXODUS Project. IEEE Data Engineering
Bulletin 10, 2 (1987), 47-54.

Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, Joel E. Richardson, Eugene J. Shekita, and
M. Muralikrishna. 1991. On Object-Oriented Database Systems. Springer, Chapter The Architecture of
the EXODUS Extensible DBMS, 231-256.

Michael J. Carey and Laura M. Haas. 1990. Extensible Database Management Systems. SIGMOD Record
19, 4 (1990), 54-60.

Michael J. Carey and Donald Kossmann. 1997. On saying "Enough Already!” in SQL. In SIGMOD. 219-230.

Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. 2005. Efficient Processing of Skyline Queries with
Partially-Ordered Domains. In ICDE. 190-191.

Chee-Yong Chan, H.V. Jagadish, Kian-Lee Tan, Anthony K.H. Tung, and Zhenjie Zhang. 2006a. Finding
k-Dominant Skylines in High Dimensional Space. In SIGMOD. 503-514.

Chee-Yong Chan, H.V. Jagadish, Kian-Lee Tan, Anthony K.H. Tung, and Zhenjie Zhang. 2006b. On High
Dimensional Skylines. In EDBT. 478-495.

Kevin Chen-Chuan Chang and Seungwon Hwang. 2002. Minimal Probing: Supporting Expensive Predicates
for Top-k Queries. In SIGMOD. 346-357.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:40 Justin Levandoski et al.

Surajit Chaudhuri, Nilesh N. Dalvi, and Raghav Kaushik. 2006. Robust Cardinality and Cost Estimation
for Skyline Operator. In ICDE. 64.

Surajit Chaudhuri and Luis Gravano. 1999. Evaluating Top-K Selection Queries. In VLDB. 397-410.
Jan Chomicki. 2002. Querying with Intrinsic Preferences. In EDBT. 34-51.
Jan Chomicki. 2003. Preference Formulas in Relational Queries. TODS 28, 4 (2003), 427-466.

Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Skyline with Presorting. In ICDE.
717-816.

Douglas Comer. 1979. The Ubiquitous B-Tree. Commun. ACM 11, 2 (1979), 121-137.
George P. Copeland and Setrag N. Khoshafian. 1985. A Decomposition Storage Model. In SIGMOD. 268-279.

Markus Endres and Werner Kieflling. 2011. Semi-Skyline Optimization of Constrained Skyline Queries. In
ADC. 7-16.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algorithms for Middleware. In
PODS. 102-113.

Parke Godfrey. 2004. Skyline Cardinality for Relational Processing. Foundations of Information and Knowl-
edge Systems 2942, 1 (2004), 78-97.

Parke Godfrey, Ryan Shipley, and Jarek Gryz. 2005. Maximal Vector Computation in Large Data Sets. In
SIGMOD. 229-240.

Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation System. TKDE 6, 1 (1994),
120-135.

Goetz Graefe and David J. DeWitt. 1987. The EXODUS Optimizer Generator. In SIGMOD. 160-172.
Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure For Spatial Searching. In SIGMOD. 47-57.

Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh. 1989. Extensible Query
Processing in Starburst.. In SIGMOD. 377-388.

Bernd Hafenrichter and Werner Kieflling. 2005. Optimization of Relational Preference Queries. In ADC.
175-184.

Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized Search Trees for Database
Systems. In VLDB. 562-573.

Thab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2002. Joining Ranked Inputs in Practice. In VLDB.
950-961.

Thab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Supporting Top-k Join Queries in Relational
Databases. In VLDB. 754-765.

Thab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A Survey of Top-k Query Processing Tech-
niques in Relational Database Systems. Comput. Surveys 40, 4 (2008).

Thab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter, and Ahmed K. Elmagarmid. 2004. Rank-Aware
Query Optimization. In SIGMOD. 203-214.

Wen Jin, Martin Ester, Zengjian Hu, and Jiawei Han. 2007. The Multi-Relational Skyline Operator. In
ICDE. 1276-1280.

Wen Jin, Michael Morse, Jignesh Patel, Martin Ester, and Zengjian Hu. 2010. Evaluating Skylines in the
Presence of Equi-joins. In ICDE. 249-260.

Navin Kabra and David J. DeWitt. 1999. OPT: An Object-Oriented Implementation for Extensible Database
Query Optimization. VLDB Journal 8, 1 (1999), 55-78.

Werner Kiefiling. 2002. Foundations of Preferences in Database Systems. In VLDB. 311-322.
Werner KieBlling. 2005. Preference Queries with SV-Semantics. In COMAD. 16-26.

Werner KieBling, Markus Endres, and Florian Wenzel. 2011. The Preference SQL System - An Overview.
IEEE Data Engineering Bulletin 34, 2 (2011), 11-18.

Werner KieBlling and Gerhard Kostler. 2002. Preference SQL - Design, Implementation, Experiences. In
VLDB. 990-1001.

Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002. Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In VLDB. 275-286.

Georgia Koutrika and Yannis Ioannidis. 2004. Personalization of Queries in Database Systems. In ICDE.
597-608.

Georgia Koutrika and Yannis Ioannidis. 2005a. Constrained Optimalities in Query Personalization. In SIG-
MOD. 73-84.

Georgia Koutrika and Yannis E. Ioannidis. 2005b. Personalized Queries under a Generalized Preference
Model. In ICDE. 841-852.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:41

Georgia Koutrika, Evaggelia Pitoura, and Kostas Stefanidis. 2010. Preferences in Databases. In ICDE.
1214-1215.

M. Lacroix and Pierre Lavency. 1987. Preferences: Putting More Knowledge into Queries. In VLDB. 217—
225.

Jongwuk Lee, Gae won You, and Seung won Hwang. 2009. Personlized Top-K Skyline Queries in High-
Dimensional Space. Information Systems 34, 1 (2009), 45-61.

Justin J. Levandoski, Mohamed Khalefa, and Mohamed F. Mokbel. 2010a. A Demonstration of FlexPref:
Extensible Preference Evaluation inside the DBMS Engine. In SIGMOD. 1247-1250.

Justin J. Levandoski, Mohamed Khalefa, and Mohamed F. Mokbel. 2010b. FlexPref: A Framework for Ex-
tensible Preference Evaluation in Database Systems. In ICDE. 828-839.

Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. 2005. RankSQL: Query Algebra
and Optimization for Relational Top-k Queries. In SIGMOD. 131-142.

Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. 2007. Selecting Stars: The k£ Most Representative
Skyline Operator. In ICDE. 86-95.

Volker Linnemann, Klaus Kspert, Peter Dadam, Peter Pistor, R. Erbe, Alfons Kemper, Norbert Sdkamp,
Georg Walch, and Mechtild Wallrath. 1988. Design and Implementation of an Extensible Database
Management System Supporting User Defined Data Types and Functions.. In VLDB. 294-305.

Guy M. Lohman, George Lapis, Tobin J. Lehman, Rakesh Agrawal, Roberta Cochrane, John McPherson,
C. Mohan, Hamid Pirahesh, and Jennifer Widom. 1991. Starburst II: The Extender Strikes Back!. In
SIGMOD. 447.

Clifford A. Lynch and Michael Stonebraker. 1988. Extended User-Defined Indexing with Application to
Textual Databases. In VLDB. 306-317.

Steve Olson, Richard Pledereder, Phil Shaw, and David Yach. 1998. The Sybase Architecture for Extensible
Data Management. IEEE Data Engineering Bulletin 21, 3 (1998), 12-24.

James Ong, Dennis Fogg, and Michael Stonebraker. 1984. Implementation of Data Abstraction in the Rela-
tional Database System INGRES. SIGMOD Record 14, 1 (1984), 1-14.

Sylvia L. Osborn and T. E. Heaven. 1986. The Design of a Relational Database System with Abstract Data
Types for Domains. TODS 11, 3 (1986), 357-373.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule Based Query Rewrite
Optimization in Starburst. In SIGMOD. 447.

PostgreSQL. http://www.postgresql.org. (????).

Venkatesh Raghavan and Elke Rundensteiner. 2010. Progressive Result Generation for Multi-Criteria De-
cision Support Queries. In ICDE. 733-744.

Berthold Reinwald and Hamid Pirahesh. 1998. SQL Open Heterogeneous Data Access. In SIGMOD. 506 —
507.

Berthold Reinwald, Hamid Pirahesh, Ganapathy Krishnamoorthy, George Lapis, Brian T. Tran, and Swati
Vora. 1999. Heterogeneous Query Processing through SQL Table Functions. In ICDE. 366-373.

Patrick Roocks, Markus Endres, Stefan Mandl, and Werner Kieflling. 2012. Composition and Efficient Eval-
uation of Context-Aware Preference Queries. In DASFAA. 81-95.

Leonard D. Shapiro. 1986. Join Processing in Database Systems with Large Main Memories. TODS 11, 3
(1986), 239-264.

Jagannathan Srinivasan, Ravi Murthy, Seema Sundara, Nipun Agarwal, and Samuel DeFazio. 2000. Ex-
tensible Indexing: A Framework for Integrating Domain-Specific Indexing Schemes into Oracle8i. In
ICDE. 91-100.

Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. 2011. A Survey on Representation, Composi-
tion and Application of Preferences in Database Systems. TODS 36, 3 (2011).

Kostas Stefanidis and Evaggelia Pitoura. 2008. Fast Contextual Preference Scoring of Database Tuples. In
EDBT. 344-355.

Kostas Stefanidis, Evaggelia Pitoura, and Panos Vassiliadis. 2007. Adding Context to Preferences. In ICDE.
846-855.

Michael Stonebraker. 1986. Inclusion of New Types in Relational Data Base Systems. In ICDE. 262—-269.

Michael Stonebraker, Jeff Anton, and Eric N. Hanson. 1987. Extending a Database System with Procedures.
TODS 12, 3 (1987), 350-376.

Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In SIGMOD. 340-355.

Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. 2009. Distance-based Representative Skyline. In ICDE.
892-903.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:42 Justin Levandoski et al.

Akrivi Vlachou, Christos Doulkeridis, and Neoklis Polyzotis. 2011. Skyline Query Processing over Joins. In
SIGMOD. 73-84.

Florian M. Waas and Joseph M. Hellerstein. 2009. Parallelizing Extensible Query Optimizers. In SIGMOD.
871-878.

Florian Wenzel, Markus Endres, Stefan Mandl, and Werner Kieflling. 2012. Complex Preference Queries
Supporting Spatial Applications for User Groups. Proceedings of the VLDB Endowment 5, 12 (2012),
1946-1949.

Annita N. Wilshut and Peter M.G. Apers. 1993. Dataflow query execution in a parallel main-memory envi-
ronment. Distributed and Parallel Databases 1, 1 (1993), 103—128.

Raymond ChiWing Wong, Ada WaiChee Fu, Jian Pei, Yip Sing Ho, Tai Wong, and Yubao Liu. 2008. Efficient
Skyline Querying with Variable User Preferences on Nominal Attributes. In VLDB. 1032-1043.

Tian Xia, Donghui Zhang, and Yufei Tao. 2008. On Skylining with Flexible Dominance Relation. In ICDE.
1397-1399.

Man Lung Yiu and Nikos Mamoulis. 2007. Efficient Processing of Top-k Dominating Queries on Multi-
Dimensional Data. In VLDB. 483-494.

Zhenjie Zhang, Yin Yang, Ruichu Cai, Dimitris Papadias, and Anthony Tung. 2009. Kernel-Based Skyline
Cardinality Estimation. In SIGMOD. 509-522.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Flexible and Extensible Preference Evaluation in Database Systems 0:43
Table VI. Implementation summary for case studies
IsTransitive] DefaultScore | PairwiseCompare| IsPreferredObject] AddPreferredToSet | StopSortedEval
Skyline true 1 If P dominates | If object score | Add object P to | Stop once there is
Q, return 1. If | Pscore equals | the end of set S. a complete object
@ dominates | 1, return true. Q in set P
P, update | Otherwise
Pscore to 0 and | return false.
return -1. Oth-
erwise, return
0
Top-k true 0 If P dominates | If the cardi- | If S has a car- | Stop once there
Domination Q, increment | nality of S is | dinality of k, re- | are k complete ob-
Pscore by 1. | less than k or | move the k" ob- | jects in set P.
Return 0 Pscore is supe- | ject from S. Add P
rior to the k* | to S in sorted or-
object’s score | der by Pscore.
in S, return
true. False
otherwise.
K- false 1 If P If object score | Add object P to | Stop once set P
Dominance k-dominates QQ, | Pscore equals | the end of set S. contains an object
return 1. If Q | 1, return true. @ with at most
k-dominates P, | Otherwise k — 1 incomplete
set Pscore = 0, | return false. dimensions, and
return -1. Else Q k-dominates
return 0. virtual object O,
and O cannot
k-dominate Q.
K-Frequency | true 0 Increment If |S] < kor | If S has a car- | Stop once there is
Pscore based | Pscore is supe- | dinality of k, re- | a complete object
on the dis- | rior to the k'® | move the k' ob- | Q in set P.
tinct sub- | object’s scorein | ject from S. Add P
dimensions S, return true. | to S in sorted or-
where @ dom- | Otherwise, re- | der by Pscore.
inates P. | turn false.
Return 0.

Top-K true 0 Return -1 Assign a score | If S has a car- | Stop once P
to Pscore using | dinality of k, re- | contains k com-
ranking func- | move the k' ob- | plete objects that
tion f. If the | ject from S.Add P | have scores <
cardinality of | to S in sorted or- | a given thresh-
S is less than | der by Pscore. old value T. T =
k or Pscore is MIN(f(O[1],F[2]
superior to the -, F[nl),
kth object’s f(F[11,0[2],
score in S, ...,F[n]),
return true. f(FI1L,F[2]
Otherwise, -+-,0[n]).
return false.

Epsilon ife > 0. |0 If P e- | Return ¢rue if | Append P to the | If e < 0, stop once

Dominance true dominates the score of P | end of set S. there is a complete

else false Q, return 1. If | is one. Oth- object Q in set P.
Q e-dominates | erwise return If € > 0, stop once
P, set the score | false. there is a complete
of P to zero, point Q in P that
and return -1. is not e-dominated
Else, return 0. by virtual point O.

k- true 0 If P dominates | Compare P to | Add P to S in | Same as the sky-

Representative Q, increment | objectin S, if P | sorted order by | line method.

Skyline Pscore and | is a skyline re- | the score of P; also

return 0 turn true. Oth- | remove any non-
erwise, return | skyline objects
false. from S.
ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

